First map of proinsulin's 'social network' reveals new drug target for type 2 diabetes

May 27, 2020

Scientists at Sanford Burnham Prebys Medical Discovery Institute have mapped for the first time the vast network of proteins that interact with proinsulin, the protein the body normally processes into insulin. The study, published in Diabetes, also revealed one protein--called PRDX4--that may be essential for proinsulin folding and insulin production. The research suggests that boosting PRDX4 levels may be a novel therapeutic approach to improving the health of people with diabetes.

"Type 2 diabetes is a progressive condition, and over time the insulin-producing beta cells in the pancreas 'burn out' and die. Our recent work suggests that proinsulin misfolding plays a role in beta cell failure and the development of type 2 diabetes," says Pamela Itkin-Ansari, Ph.D., adjunct associate professor in the Development, Aging and Regeneration Program at Sanford Burnham Prebys and senior and co-corresponding author of the study. "Our hope is that by fixing proinsulin misfolding, potentially by targeting PRDX4, we may be able to protect or even restore the health of beta cells and achieve a functional cure."

Proteins are the workhorses of the cell, and their function depends on their shape. When proteins are misfolded or damaged, their shape becomes flawed and they can't perform their regular duties. Faulty proteins need to be fixed or eliminated before they accumulate, clump or become toxic, and cause diseases. Incorrect protein folding is linked to many degenerative diseases, including Alzheimer's, Parkinson's and diabetes.

Mapping proinsulin's "social network"

In the study, the scientists obtained pancreatic islets, which contain the insulin-producing beta cells, from six healthy people--including men and women of Caucasian, Hispanic and African-American ethnicities. Using a special molecular technique, the researchers isolated all the proteins that the proinsulin physically interacts with, or "touches," as it travels within a beta cell and is processed into insulin.

This work uncovered more than 400 proteins that interact with proinsulin and identified one, called PRDX4, that plays a key role in proper proinsulin folding. Further work confirmed that PRDX4 is inactivated in islets from people with type 2 diabetes--indicating that the protein holds potential as a therapeutic target.

"Protein folding is a remarkably complex process," says Randal Kaufman, Ph.D., director and professor in the Degenerative Diseases Program at Sanford Burnham Prebys and co-corresponding author of the study. "This study unravels some of that complexity and helps explain the link between type 2 diabetes, proinsulin folding and insulin production."

The scientists are already repeating this study in islets from people with type 2 diabetes to understand how proinsulin folding changes or fails during disease. Once these findings are in hand, they will have an even deeper understanding of interventions that may fix or prevent the misfolding.

More than 422 million people worldwide have diabetes, according to the World Health Organization, and these numbers are rising due to increased obesity. Type 2 diabetes accounts for 90% of diabetes cases and occurs when the body doesn't properly use insulin--the protein that removes sugar from the blood. Most current medications help tissues absorb more sugar or increase insulin secretion. No treatments exist that promote proper proinsulin folding to keep beta cells functioning.

"I lost my father to diabetes, so I know firsthand how dangerous this condition can be and what an effective treatment means to patients and their families," says Itkin-Ansari. "This study is a first step toward a future when we might be able to help more people manage type 2 diabetes and live a long, healthy life."
-end-
This work was supported by the National Institutes of Health (NIH) (R24DK110973) and the Juvenile Diabetes Research Foundation (JDRF) (2-SRA-2015-47-M-R). The study's DOI is 10.2337/DB20-0245.

The co-first authors of the study are Duc T. Tran and Anita Pottekat of Sanford Burnham Prebys (Pottekat now at Illumina). Additional study authors include Saiful A. Mir, Insook Jang, Alexandre Rosa Campos, Kathleen M. Scully, Reyhaneh Lahmy of Sanford Burnham Prebys; Peter Arvan of the University of Michigan Medical School; Ming Liu of Tianjin Medical University and the University of Michigan Medical School; and Salvatore Loguercio and William E. Balch of Scripps Research.

About Sanford Burnham Prebys Medical Research Institute

Sanford Burnham Prebys is a preeminent, independent biomedical research institute dedicated to understanding human biology and disease and advancing scientific discoveries to profoundly impact human health. For more than 40 years, our research has produced breakthroughs in cancer, neuroscience, immunology and children's diseases, and is anchored by our NCI-designated Cancer Center and advanced drug discovery capabilities. For more information, visit us at SBPdiscovery.org or on Facebook at facebook.com/SBPdiscovery and on Twitter @SBPdiscovery.

Sanford Burnham Prebys Medical Discovery Institute

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.