A special elemental magic

May 27, 2020

Kyoto, Japan -- A staple in every science classroom is the periodic table of elements, and for many it is their first introduction to the vast mysteries of the natural world.

Now physicists from Kyoto University have unveiled a new table that provides a different perspective on the building blocks of the universe. While the traditional table is based on the behavior of electrons in an atom, this new table is based on the protons in the nucleus.

"The periodic table of the elements is one of the most significant achievements in science, and in its familiar form it is based on the shell structure of electron orbitals in atoms," explains Yoshiteru Maeno, one of the co-developers of the new table.

"But atoms are comprised of two types of charged particles that designate each element: electrons orbiting the core and protons in the core itself."

The team's new 'Nucletouch' table -- also available as a 3D model -- was announced recently in the journal Foundations of Chemistry.

Over 150 years have passed since Dmitri Mendeleev discovered the periodic law that lead him to propose the classic periodic table. He even had the foresight to add space for elements that were still unknown in his time.

"Fundamentally, it comes down to the electrons in each atom. Atoms are considered to be stable when electrons completely fill their 'shell' of orbits around the nucleus," continues Maeno.

"So-called 'noble gases', inert elements such as helium, neon, and argon, rarely react with other elements. Their most stable electron numbers are 2, 10, 18, 36, and so on."

Maeno decribes these as atomic 'magic numbers', and importantly the same principle can also be applied to protons. Imagining that protons in a nucleus exist in 'orbits' may seem like a stretch, but the discovery of the concept was awarded the 1963 Nobel prize in physics.

Protons have different stable magic numbers: 2, 8, 20, 28, and so on. Among these are familiar elements such at helium, oxygen, and calcium. The Nucletouch table places these 'magic nuclei' at its center, providing a new perspective on the elements.

"Similar to electrons, when nuclear orbits are filled with protons, they form stable nuclei, analogous to the noble-gas elements," says collaborator Kouichi Hagino.

"In our nuclear periodic table, we also see that nuclei tend to be spherically-shaped near the magic numbers, but deformed as you move away from them."

The team made the table to highlight alternative ways to illustrate the laws of nature, and hopes that enthusiasts and academics alike will find something to enjoy and learn from this fresh new look at an old friend.
-end-
The paper "A nuclear periodic table" appeared on 21 April 2020 in Foundations of Chemistry, with doi: 10.1007/s10698-020-09365-5

About Kyoto University

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Kyoto University

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.