Study: Ultra-thin fibres designed to protect nerves after brain surgery

May 27, 2020

Brain surgery poses a major threat to nerve cells. Even slight injuries can kill the sensitive cells. The drug nimodipine could help prevent this. It is currently being used to treat cerebral haemorrhages. The drug relaxes blood vessels which can prevent cramping. It also appears to stop nerve cells from dying. The research group led by Professor Karsten Mäder from the Institute of Pharmacy at MLU has now developed a system that enables the drug to be administered directly in the brain. "The neurosurgeons wanted the drug to be applied locally in order to reduce potential side effects," explains Mäder.

His research group has integrated nimodipine into biodegradable polymer fibres. The fibres are only one to two micrometres thick. They can degrade in the body and the material which they are made of is already widely used in medicine. "If you want to apply something directly to the nerves, it must be well tolerated," says Mäder. This is because nerve cells are particularly sensitive. So far, the nimodipine-polymer fibres have been tested in the laboratory for stability and their effect on different cell cultures. Mäder's team of researchers has been able to show that they release the active ingredient at a very constant rate. This is important as it prevents side effects in the case of an overdose.

Professor Christian Scheller's research group in the Department of Neurosurgery at UKH then tested how they affected various brain cells. The fibres exhibited no toxic effects. Under various stress conditions, such as heat or high salt concentrations, they reduced the number of cell deaths, in some cases drastically. Nerve cells particularly benefited from the treatment. "In the cell systems, we were able to show that the effect was as good as if we had added the active ingredient without the fibres, in other words intravenously," says Scheller. However, the latter method has several disadvantages: The active ingredient degrades very quickly and has undesirable side effects, as it relaxes the blood vessels not only in the brain but throughout the entire body, including the heart muscles. This can lead to dangerously low blood pressure if the dose is too high. Directly applying it to the brain could minimize these side effects because significantly less of the active ingredient is required.

The fibres could also be used outside the brain, says Scheller, for example in different types of operations where nerves are at risk.
-end-


Martin-Luther-Universität Halle-Wittenberg

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.