Nav: Home

Under pressure, black holes feast

May 27, 2020

New Haven, Conn. -- A new, Yale-led study shows that some supermassive black holes actually thrive under pressure.

It has been known for some time that when distant galaxies --and the supermassive black holes within their cores -- aggregate into clusters, these clusters create a volatile, highly pressurized environment. Individual galaxies falling into clusters are often deformed during the process and begin to resemble cosmic jellyfish.

Curiously, the intense pressure squelches the creation of new stars in these galaxies and eventually shuts off normal black hole feeding on nearby interstellar gas. But not before allowing the black holes one final feast of gas clouds and the occasional star.

The researchers also suggested this rapid feeding might be responsible for the eventual lack of new stars in those environments. The research team said "outflows" of gas, driven by the black holes, might be shutting off star formation.

"We know that the feeding habits of central supermassive black holes and the formation of stars in the host galaxy are intricately related. Understanding precisely how they operate in different larger-scale environments has been a challenge. Our study has revealed this complex interplay," said astrophysicist Priyamvada Natarajan, whose team initiated the research. Natarajan is a professor of astronomy and physics in Yale's Faculty of Arts and Sciences.

The study is published in the Astrophysical Journal Letters. The first author is Angelo Ricarte, a former member of Natarajan's lab now at Harvard, who started this work as a Yale doctoral student. Co-authors are Yale Center for Astronomy and Astrophysics Prize postdoctoral associate Michael Tremmel and Thomas Quinn of the University of Washington.

The new study adds to a significant body of work from Natarajan's research group regarding how supermassive black holes form, grow, and interact with their host galaxies in various cosmic environments.

The researchers conducted sophisticated simulations of black holes within galaxy clusters using RomulusC, a cosmological simulation that Tremmel, Quinn and others developed.

Ricarte developed new tools for extracting information from RomulusC. While analyzing black hole activity in the cluster simulation, he said, he noticed "something weird happening once their host galaxies stopped forming stars. Surprisingly, I often spotted a peak in black hole activity at the same time that the galaxy died."

That "peak" would be the black hole's big, final feast, under pressure.

Tremmel said that "RomulusC is unique because of its exquisite resolution and the detailed way in which it treats supermassive black holes and their environments, allowing us to track their growth."
-end-
Support for the research came from a number of sources, including NASA and the National Science Foundation. The research is part of the Blue Waters computing project supported by the National Science Foundation and the University of Illinois at Urbana-Champaign.

Yale University

Related Black Hole Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.