Stem cell identity unmasked by single cell sequencing technology

May 28, 2019

Scientists from The University of Queensland's Diamantina Institute have revealed the difference between a stem cell and other blood vessel cells using gene-sequencing technology.

Leading skin cancer and stem cell researcher Professor Kiarash Khosrotehrani said the findings provided evidence of how stem cells express genes that allow them to be identified within a blood vessel.

"Until now, we couldn't accurately say how a stem cell differed from the other cells without preconceived ideas," Professor Khosrotehrani said.

"We hypothesised that stem cells expressed genes that could separate them from other cells inside the blood vessel."

UQDI Senior Lecturer Dr Jatin Patel performed the study and looked at every single cell in the largest artery, the aorta, and identified the genes expressed by each cell through sequencing.

"This allowed us to examine every cell without any bias or pre-conceived idea of whether it is a stem cell or not," Dr Patel said.

The study used single-cell RNA sequencing to look at the gene expression of each cell and group common cells together into separate populations.

UQ Institute for Molecular Bioscience Senior Research Officer Dr Sam Lukowski performed the analysis.

"We used specialised algorithms to group cells that express similar sets of genes into clusters," Dr Lukowski explained.

"What we found is that these stem cells form little groups within the blood vessel and that is how you differentiate them from other cells."

Knowing the exact profile of a stem cell will help researchers develop new treatment options for conditions like skin cancer, heart attacks and wound healing.

"This will have an impact on how we treat conditions which are the result of dysfunctional blood vessel behaviour," Professor Khosrotehrani said.

"We know that if you can target these stem cells, then you can reduce blood vessel formation and potentially stop diseases like skin cancer metastasis."

Previous research by Professor Khosrotehrani found that stopping the spread of melanoma to other parts of the body might be as simple as cutting off the blood supply to cancer.

"Blood vessels are vital because tumours can't grow without them - they feed the tumours and allow the cancer to spread," he said.

"If you get rid of these stem cells, then the blood vessels don't form, and the tumours don't grow or spread to other locations."

In situations where blood vessels are missing or are clogged, providing more stem cells might generate new blood vessels and allow the supply of oxygen in cardiovascular diseases such as heart attacks, stroke or leg ischemia.

Professor Khosrotehrani had hypothesised this method of stem cell identification and said these findings provided answers to scientific debate.

"We've been working on this type of research for over ten years and the model we've found matches perfectly with our previous findings," he said.

"The availability of the data publicly will allow scientists from all over the world to hopefully end some of the controversy around the identity and definition of these stem cells."

University of Queensland

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to