Energy researchers break the catalytic speed limit

May 28, 2019

A team of researchers from the University of Minnesota and University of Massachusetts Amherst has discovered new technology that can speed up chemical reactions 10,000 times faster than the current reaction rate limit. These findings could increase the speed and lower the cost of thousands of chemical processes used in developing fertilizers, foods, fuels, plastics, and more.

The research is published online in ACS Catalysis, a leading journal of the American Chemical Society.

In chemical reactions, scientists use what are called catalysts to speed reactions. A reaction occurring on a catalyst surface, such as a metal, will speed up, but it can only go as fast as permitted by what is called the Sabatier's principle. Often called the "Goldilocks principle" of catalysis, the best possible catalyst aims to perfectly balance two parts of a chemical reaction. Reacting molecules should stick to a metal surface to react neither too strong nor too weakly, but "just right." Since this principle was established quantitatively in 1960, the Sabatier maximum has remained the catalytic speed limit.

Researchers of the Catalysis Center for Energy Innovation, funded by the U.S. Department of Energy, found that they could break the speed limit by applying waves to the catalyst to create an oscillating catalyst. The wave has a top and bottom, and when applied, it permits both parts of a chemical reaction to occur independently at different speeds. When the wave applied to the catalyst surface matched the natural frequency of a chemical reaction, the rate went up dramatically via a mechanism called "resonance."

"We realized early on that catalysts need to change with time, and it turns out that kilohertz to megahertz frequencies dramatically accelerate catalyst rates," said Paul Dauenhauer, a professor of chemical engineering and materials science at the University of Minnesota and one of the authors of the study.

The catalytic speed limit, or Sabatier maximum, is only accessible for a few metal catalysts. Other metals that have weaker or stronger binding exhibit slower reaction rate. For this reason, plots of catalyst reaction rate versus metal type have been called "volcano-shaped plots" with the best static catalyst existing right in the middle at the volcano peak.

"The best catalysts need to rapidly flip between strong and weak binding conditions on both sides of the volcano diagram," said Alex Ardagh, post-doctoral scholar in the Catalysis Center for Energy Innovation. "If we flip binding strength quickly enough, catalysts that jump between strong and weak binding actually perform above the catalytic speed limit."

The ability to accelerate chemical reactions directly affects thousands of chemical and materials technologies used to develop fertilizers, foods, fuels, plastics, and more. In the past century, these products have been optimized using static catalysts such as supported metals. Enhanced reaction rates could significantly reduce the amount of equipment required to manufacture these materials and lower the overall costs of many everyday materials.

Dramatic enhancement in catalyst performance also has the potential to scale down systems for distributed and rural chemical processes. Due to cost savings in large-scale conventional catalyst systems, most materials are only manufactured in enormous centralized locations such as refineries. Faster dynamic systems can be smaller processes, which can be located in rural locations such as farms, ethanol plants, or military installations.

"This has the potential to completely change the way we manufacture almost all of our most basic chemicals, materials, and fuels," said Professor Dionisios Vlachos, director of the Catalysis Center for Energy Innovation. "The transition from conventional to dynamic catalysts will be as big as the change from direct to alternating current electricity."
-end-
To read the full research paper, entitled "Principles of Dynamic Heterogeneous Catalysis: Surface Resonance and Turnover Frequency Response," visit the ACS Catalysis website.

The discovery of dynamic resonance in catalysis is part of a larger mission of the Catalysis Center for Energy Innovation, a U.S. Department of Energy-Energy Frontier Research Center, led by the University of Delaware. Initiated in 2009, the Catalysis Center for Energy Innovation has focused on transformational catalytic technology to produce renewable chemicals and biofuels via advanced nanomaterials. Learn more on the Catalysis Center for Energy Innovation website.

University of Minnesota

Related Chemical Reactions Articles from Brightsurf:

Shedding light on how urban grime affects chemical reactions in cities
Many city surfaces are coated with a layer of soot, pollutants, metals, organic compounds and other molecules known as ''urban grime.'' Chemical reactions that occur in this complex milieu can affect air and water quality.

Seeing chemical reactions with music
Audible sound enables chemical coloring and the coexistence of different chemical reactions in a solution.

Nanocatalysts that remotely control chemical reactions inside living cells
POSTECH professor In Su Lee's research team develops a magnetic field-induced heating 'hollow nanoreactors'.

New NMR method enables monitoring of chemical reactions in metal containers
Scientists have developed a new method of observing chemical reactions in metal containers.

Levitating droplets allow scientists to perform 'touchless' chemical reactions
Levitation has long been a staple of magic tricks and movies.

Predicting unpredictable reactions
New research from the University of Pittsburgh's Swanson School of Engineering, in collaboration with the Laboratory of Catalysis and Catalytic Processes (Department of Energy) at Politecnico di Milano in Milan, Italy, advances the field of computational catalysis by paving the way for the simulation of realistic catalysts under reaction conditions.

First-time direct proof of chemical reactions in particulates
Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before.

Finding the source of chemical reactions
In a collaborative project with MIT and other universities, scientists at Argonne National Laboratory have experimentally detected the fleeting transition state that occurs at the origin of a chemical reaction.

Accelerating chemical reactions without direct contact with a catalyst
Northwestern University researchers demonstrate a chemical reaction produced through an intermediary created by a separate chemical reaction, findings that could impact environmental remediation and fuel production.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Read More: Chemical Reactions News and Chemical Reactions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.