Sea snakes have been adapting to see underwater for 15 million years

May 28, 2020

Sea snakes first entered the marine environment 15 million years ago and have been evolving ever since to survive in its changing light conditions, according to a new study.

Research led by the University of Plymouth (UK) has for the first time provided evidence of where, when and how frequently species have adapted their ability to see in colour.

It suggests sea snakes' vision has been modifying genetically over millions of generations, enabling them to adapt to new environments and meaning they can continue to see prey - and predators - deep below the sea surface.

In an unexpected twist, the study published in Current Biology also suggests that diving sea snakes actually share their adaptive properties not with other snakes or marine mammals, but with some fruit-eating primates.

The research was led by Dr Bruno Simões, Lecturer in Animal Biology at the University of Plymouth, and involved scientists from the UK, Australia, Denmark, Bangladesh and Canada.

Dr Simões, formerly a Marie Sk?odowska-Curie Global Fellow at the University of Bristol (UK) and University of Adelaide (Australia), said: "In the natural world, species obviously have to adapt as the environment around them changes. But to see such a rapid change in the sea snakes' vision over less than 15 million years is truly astonishing. The pace of diversification among sea snakes, compared to their terrestrial and amphibious relatives, is perhaps a demonstration of the immensely challenging environment they live in and the need for them to continue to adapt in order to survive.

"Our study also shows that snake and mammal vision has evolved very differently in the transition from land to sea. Sea snakes have retained or expanded their colour vision compared to their terrestrial relatives, whereas pinnipeds and cetaceans underwent a further reduction in the dimensions of their colour vision. This contrast is further evidence of the remarkable evolutionary diversity of snake eyesight."

In the study, scientists say that despite being descended from highly visual lizards, snakes have limited (often two-tone) colour vision, attributed to the dim-light lifestyle of their early snake ancestors.

However, the living species of front-fanged and venomous elapids are ecologically very diverse, with around 300 terrestrial species (such as cobras, coral snakes and taipans) and 63 fully marine sea snakes.

To try and establish how this diversity occurred, scientists analysed various species of terrestrial and sea snakes from sources including fieldwork in Asia and Australia and historical museum collections.

They investigated the evolution of spectral sensitivity in elapids by analysing their opsin genes (which produce visual pigments that are responsible for sensitivity to ultra-violet and visible light), retinal photoreceptors and eye lenses.

Their results showed that sea snakes had undergone rapid adaptive diversification of their visual pigments when compared with their terrestrial and amphibious relatives.

In one specific example, a particular lineage of sea snake had expanded its UV-Blue sensitivity. Sea snakes forage on the sea floor in depths exceeding 80metres, yet must swim to the surface to breathe at least once every few hours. This expanded UV-Blue sensitivity helps the snakes to see in the variable light conditions of the ocean water column.

Also, most vertebrates have pairs of chromosomes resulting in two copies of the same genes. In some fruit-eating primates, the two copies might be slightly different (alleles) resulting in visual pigments with different spectral properties, expanding their colour vision. This study suggests that some sea snakes used the same mechanism to expand their underwater vision with both UV sensitive and blue-sensitive alleles.

Dr Kate Sanders, Associate Professor of the University of Adelaide and senior author, said: "Different alleles of the same gene can be used by organisms to adapt new environmental conditions. The ABO blood types in primates are a result of different alleles of the same gene. However, despite being very important for the adaptation of species this mechanism is still poorly reported. For vision, it has been only reported on the long-wavelength opsin of some primates but our study suggests an intriguing parallel with diving sea snakes."
-end-


University of Plymouth

Related Vision Articles from Brightsurf:

School-based vision screening programs found 1 in 10 kids had vision problems
A school-based vision screening program in kindergarten, shown to be effective at identifying untreated vision problems in 1 in 10 students, could be useful to implement widely in diverse communities, according to new research in CMAJ (Canadian Medical Association Journal) http://www.cmaj.ca/lookup/doi/10.1503/cmaj.191085.

Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.

Vision loss influences perception of sound
People with severe vision loss can less accurately judge the distance of nearby sounds, potentially putting them more at risk of injury.

'Time is vision' after a stroke
University of Rochester researchers studied stroke patients who experienced vision loss and found that the patients retained some visual abilities immediately after the stroke but these abilities diminished gradually and eventually disappeared permanently after approximately six months.

Improving the vision of self-driving vehicles
There may be a better way for autonomous vehicles to learn how to drive themselves: by watching humans.

A new model of vision
MIT researchers have developed a computer model of face processing that could reveal how the brain produces richly detailed visual representations so quickly.

Vision may be the real cause of children's problems
Do you have poor motor skills or struggle to read, write or solve math problems?

Shark and ray vision comes into focus
Until now, little has been known about the evolution of vision in cartilaginous fishes, particularly sharks and their genetic cousins, the rays.

The birth of vision, from the retina to the brain
How do neurons differentiate to become individual components of the visual system?

Tracing the evolution of vision
The function of the visual photopigment rhodopsin and its action in the retina to facilitate vision is well understood.

Read More: Vision News and Vision Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.