New drug combinations help overcome resistance to immunotherapy

May 28, 2020


A new study from researchers at the UCLA Jonsson Comprehensive Cancer Center helps explain how disruptions in genes can lead to the resistance to one of the leading immunotherapies, PD-1 blockade, and how new drug combinations could help overcome resistance to the anti-PD-1 therapy in a mechanistically-based way.

The team found changing the tumor microenvironment with toll-like receptor 9 agonists made up of sequences of nucleic acids that mimic a bacterial infection, as well as another immunotherapy drug NKTR-214 that stimulates a natural killer cell response, can help induce a potent immune reaction that enables the immune system to more effectively attack resistant tumors. When these drugs were given in combination with PD-1 blockade, they were able to overcome genetic immunotherapy resistance in preclinical models.


The development of immunotherapies, like PD-1 blockade, has changed the landscape of cancer therapy. It is extremely effective for a substantial number of patients, even those with lethal tumors. Despite its success in treating people with deadly forms of cancer, there are still many people who do not benefit from the treatment or eventually experience a relapse of their cancer. Various combinations of PD-1 blockade with other therapies are being investigated, but there is currently no easy way to identify which therapeutic agents can best improve immune response on underlying mechanisms involving resistance to PD-1 blockade. UCLA researchers have been seeking ways to better understand the biology of resistance mechanisms to develop rationally advanced combinatorial therapies to overcome this resistance.


Using CRISPR/Cas9 genome editing, the team created genetic resistant models of JAK1, JAK2 and B2M mutations by gene knockout in human and murine cell lines. They studied functional mechanisms involved in interferon-gamma signaling changes in human melanoma cell lines and in mouse models of cancer that were found to led to resistance to anti-PD-1 therapy. Based on the molecular understanding of these pathways, the team then tested strategies to overcome resistance in two mouse models of anti-PD-1 immunotherapy. They then tested in mice rationally designed combinatorial treatments to describe the best choices of combined therapy based on these mechanisms of acquired resistance.


Identifying how to improve the immune response on underlying mechanisms involving immunotherapy resistance has the potential to improve the antitumor activity of cancer immunotherapy and provide more therapies to more patients with hard-to-treat cancers. The combination therapies of PD-1 blockade with NKTR-214 or toll-like receptor 9 that were identified in the study are now being assessed in human clinical trials for patients whose tumors have not responded to anti-PD-1 therapy.

The study's lead author is Dr. Davis Torrejon, a postdoctoral researcher in the division of Hematology/Oncology at the David Geffen School of Medicine at UCLA. The senior author is Dr. Antoni Ribas, professor of medicine and director of the tumor immunology program at the UCLA Jonsson Comprehensive Cancer Center. A full list of authors can be found in the journal article.


The study was published in Cancer Discovery, a journal of the American Association for Cancer Research.


The research was funded in part by the Parker Institute for Cancer Immunotherapy, the Young Investigator Award from American Society of Clinical Oncology and grants from the National Institutes of Health.

The UCLA Jonsson Comprehensive Cancer Center has more than 500 researchers and clinicians engaged in cancer research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the UCLA Jonsson Comprehensive Cancer Center is dedicated to promoting research and translating basic science into leading-edge clinical studies.

University of California - Los Angeles Health Sciences

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to