Nav: Home

'Distance' from the brightest stars is key to preserving primordial discs

May 28, 2020

The NASA/ESA Hubble Space Telescope was used to conduct a three-year study of the crowded, massive and young star cluster Westerlund 2. The research found that the material encircling stars near the cluster's centre is mysteriously devoid of the large, dense clouds of dust that would be expected to become planets in a few million years. Their absence is caused by the cluster's most massive and brightest stars that erode and disperse the discs of gas and dust of neighbouring stars. This is the first time that astronomers have analysed an extremely dense star cluster to study which environments are favourable to planet formation.

This time-domain study from 2016 to 2019 sought to investigate the properties of stars during their early evolutionary phases and to trace the evolution of their circumstellar environments [1]. Such studies had previously been confined to the nearest, low-density, star-forming regions. Astronomers have now used the Hubble Space Telescope to extend this research to the centre of one of the few young massive clusters in the Milky Way, Westerlund 2, for the first time.

Astronomers have now found that planets have a tough time forming in this central region of the cluster. The observations also reveal that stars on the cluster's periphery do have immense planet-forming dust clouds embedded in their discs. To explain why some stars in Westerlund 2 have a difficult time forming planets while others do not, researchers suggest this is largely due to location. The most massive and brightest stars in the cluster congregate in the core. Westerlund 2 contains at least 37 extremely massive stars, some weighing up to 100 solar masses. Their blistering ultraviolet radiation and hurricane-like stellar winds act like blowtorches and erode the discs around neighbouring stars, dispersing the giant dust clouds.

"Basically, if you have monster stars, their energy is going to alter the properties of the discs," explained lead researcher Elena Sabbi, of the Space Telescope Science Institute in Baltimore, USA. "You may still have a disc, but the stars change the composition of the dust in the discs, so it's harder to create stable structures that will eventually lead to planets. We think the dust either evaporates away in 1 million years, or it changes in composition and size so dramatically that planets don't have the building blocks to form."

Westerlund 2 is a unique laboratory in which to study stellar evolutionary processes because it's relatively nearby, is quite young, and contains a rich stellar population. The cluster resides in a stellar breeding ground known as Gum 29, located roughly 14 000 light-years away in the constellation of Carina (The Ship's Keel). The stellar nursery is difficult to observe because it is surrounded by dust, but Hubble's Wide Field Camera 3 can peer through the dusty veil in near-infrared light, giving astronomers a clear view of the cluster. Hubble's sharp vision was used to resolve and study the dense concentration of stars in the central cluster.

"With an age of less than about two million years, Westerlund 2 harbours some of the most massive, and hottest, young stars in the Milky Way," said team member Danny Lennon of the Instituto de Astrofísica de Canarias and the Universidad de La Laguna. "The ambient environment of this cluster is therefore constantly bombarded by strong stellar winds and ultraviolet radiation from these giants that have masses of up to 100 times that of the Sun."

Sabbi and her team found that of the nearly 5000 stars in Westerlund 2 with masses between 0.1 and 5 times the Sun's mass, 1500 of them show dramatic fluctuations in their luminosity, which is commonly accepted as being due to the presence of large dusty structures and planetesimals. Orbiting material would temporarily block some of the starlight, causing fluctuations in brightness. However, Hubble only detected the signature of dust particles around stars outside the central region. They did not detect these dips in brightness in stars residing within four light-years of the centre.

"We think they are planetesimals or structures in formation," Sabbi explained. "These could be the seeds that eventually lead to planets in more evolved systems. These are the systems we don't see close to very massive stars. We see them only in systems outside the centre."

Thanks to Hubble, astronomers can now see how stars are accreting in environments that are like the early Universe, where clusters were dominated by monster stars. So far, the best known nearby stellar environment that contains massive stars is the starbirth region in the Orion Nebula. However, Westerlund 2 is a richer target because of its larger stellar population.

"Westerlund 2 gives us much better statistics on how mass affects the evolution of stars, how rapidly they evolve, and we see the evolution of stellar discs and the importance of stellar feedback in modifying the properties of these systems," said Sabbi. "We can use all of this information to inform models of planet formation and stellar evolution."

This cluster will also be an excellent target for follow-up observations with the upcoming NASA/ESA/CSA James Webb Space Telescope, an infrared observatory. Hubble has helped astronomers identify the stars that have possible planetary structures. With the Webb telescope, researchers will be able to study which discs around stars are not accreting material and which discs still have material that could build up into planets. Webb will also study the chemistry of the discs in different evolutionary phases and watch how they change, to help astronomers determine what role the environment plays in their evolution.

"A major conclusion of this work is that the powerful ultraviolet radiation of massive stars alters the discs around neighbouring stars," said Lennon. "If this is confirmed with measurements by the James Webb Space Telescope, this result may also explain why planetary systems are rare in old massive globular clusters."
-end-
Notes

[1] These observations were made under Hubble observing programs #14087, #15362, and #15514.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The international team of astronomers in this study consists of E. Sabbi, M. Gennaro, J. Anderson, V. Bajaj, N. Bastian, J. S. Gallagher, III, M. Gieles, D. J. Lennon, A. Nota, K. C. Sahu, and P. Zeidler.

Image credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team

LinksContacts

Elena Sabbi
Space Telescope Science Institute
Baltimore, MD, USA
Email: sabbi@stsci.edu

Bethany Downer
ESA/Hubble, Public Information Officer
Garching, Germany
Email: Bethany.Downer@partner.eso.org

ESA/Hubble Information Centre

Related Hubble Space Telescope Articles:

Hubble marks 30 years in space with tapestry of blazing starbirth
NASA is celebrating the Hubble Space Telescope's 30 years of unlocking the beauty and mystery of space by unveiling a stunning new portrait of a firestorm of starbirth in a neighboring galaxy.
CHEOPS space telescope ready for scientific operation
CHEOPS has reached its next milestone: Following extensive tests in Earth's orbit, some of which the mission team was forced to carry out from home due to the coronavirus crisis, the space telescope has been declared ready for science.
Scientists build a 'Hubble Space Telescope' to study multiple genome sequences
Scientists can now simultaneously compare 1.4 million genetic sequences, helping classify how species are related to each other at far larger scales than previously possible.
Kepler Space Telescope's first exoplanet candidate confirmed
An international team of astronomers announced the confirmation of the first exoplanet candidate identified by NASA's Kepler Mission.
Space telescope detects water in a number of asteroids
Using the infrared satellite AKARI, a Japanese research team has detected the existence of water in the form of hydrated minerals in a number of asteroids for the first time.
The Hubble Space Telescope discovers the most distant star ever observed
An international team, including researchers from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL), participated in the discovery of a star at a distance of nine billion lightyears from Earth.
ASU astronomers to build space telescope to explore nearby stars
A new ASU-led mission will launch a small satellite telescope into space to study the environment in other solar systems around the Galaxy's most common type of star.
James Webb Space Telescope's laser-focused sight
About 1 million miles away from the nearest eye surgeon, NASA's James Webb Space Telescope will be able to perfect its own vision while in orbit.
Hubble is paving scientific paths for NASA's James Webb Space Telescope
NASA's Hubble Space Telescope is helping identify potential celestial targets for the James Webb Space Telescope through a series of preparatory science observations to be completed before Webb is ready to make observations of its own.
Keeping NASA's James Webb Space Telescope in the dark
This bunny-suited technician is performing the important task of ensuring no unwanted infrared light interferes with the optical testing of NASA's James Webb Space Telescope inside of Chamber A at NASA's Johnson Space Center in Houston.
More Hubble Space Telescope News and Hubble Space Telescope Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.