Nav: Home

Stronger tropical cyclones strengthen the Kuroshio Current, further heating high latitudes

May 28, 2020

As the intensity and frequency of the strongest cyclones east of Taiwan have increased, so has the strength of the Kuroshio current, a Pacific current responsible for redistributing heat throughout the western North Pacific Ocean. According to a new study, intensifying tropical cyclones have increased the amount of energy in the ocean eddies that feed into the Kuroshio, accelerating the current. The results reveal a positive feedback between tropical cyclones (TCs) and potentially significant increased warming at higher latitudes. Climate models that overlook this and similar mechanisms may misrepresent the magnitude and pattern of warming in future climate predictions, say the authors. Similar to the Atlantic's Gulf Stream, the Kuroshio current is responsible for transporting vast amounts of warm water from the tropics to higher latitudes, retributing tropical heat to cooler latitudes. The speed of the Kuroshio (and the rate of heat transfer) is largely controlled by the wind and the mesoscale ocean eddies that feed into the larger current. Here, Yu Zhang and colleagues show that the increasing frequency and intensity of TCs in the region - a product of Pacific warming - has had the overall effect of increasing the strength of cyclonic mesoscale ocean eddies that feed the Kuroshio. At the same time, it has decreased the strength of anticyclonic ones. The result is a northward acceleration of the current, resulting in the transfer of more heat energy into the mid- and high-latitude ocean water. The results illustrate how larger tropical cyclones related to increased climate warming can influence large-scale ocean circulation by modifying underlying eddy fields that feed currents - further enhancing climate warming in regions farther afield. "For a proper representation of eddies in climate models, more theoretical and modeling studies are needed to improve our understanding of the physical processes involved in the interactions among eddies, TCs and large-scale ocean circulation, write Zhang et al.
-end-


American Association for the Advancement of Science

Related Climate Models Articles:

Atmospheric scientists study fires to resolve ice question in climate models
Black carbon from fires is an important short-term climate driver because it can affect the formation and composition of clouds.
New soil models may ease atmospheric CO2, climate change
To remove carbon dioxide from the Earth's atmosphere in an effort to slow climate change, scientists must get their hands dirty and peek underground.
Patterns in permafrost soils could help climate change models
A team of scientists spent the past four summers measuring permafrost soils across a 5,000 square-mile swath of Alaska's North Slope.
Latest climate models show more intense droughts to come
An analysis of new climate model projections by Australian researchers from the ARC Centre of Excellence for Climate Extremes shows southwestern Australia and parts of southern Australia will see longer and more intense droughts due to a lack of rainfall caused by climate change.
Some of the latest climate models provide unrealistically high projections of future warming
A new study from University of Michigan climate researchers concludes that some of the latest-generation climate models may be overly sensitive to carbon dioxide increases and therefore project future warming that is unrealistically high.
A Europe covered in grasslands or forests: innovation and research on climate models
An experiment to better understand how atmospheric variables respond to land use changes.
How tiny water droplets form can have a big impact on climate models
Droplets and bubbles are formed nearly everywhere, from boiling our morning coffee, to complex industrial processes and even volcanic eruptions.
Individual climate models may not provide the complete picture
Equilibrium climate sensitivity -- how sensitive the Earth's climate is to changes in atmospheric carbon dioxide -- may be underestimated in individual climate models, according to a team of climate scientists.
Deep neural networks speed up weather and climate models
A team of environmental and computation scientists at the US Department of Energy's (DOE) Argonne National Laboratory are collaborating to use deep neural networks, a type of machine learning, to replace the parameterizations of certain physical schemes in the Weather Research and Forecasting Model, an extremely comprehensive model that simulates the evolution of many aspects of the physical world around us.
Climate models and geology reveal new insights into the East Asian monsoon
A team of scientists, led by the University of Bristol, have used climate models and geological records to better understand changes in the East Asian monsoon over long geologic time scales.
More Climate Models News and Climate Models Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.