A new horizon for vibrational circular dichroism spectroscopy

May 28, 2020

Vibrational circular dichroism (VCD) spectroscopy is an extension of circular dichroism spectroscopy into the infrared and near-infrared regions where vibrational transitions occur in the ground electronic state of a molecule. The method offers the advantage of studying the chiroptical properties of a wide range of molecules in non-crystalline states. However, due to the weakness of the signals, one measurement requires several hours to yield reliable results. Accordingly, its target was limited to a stable molecule in a solution. To overcome this difficulty, our group applied the VCD method to supramolecular systems. In this article, we report a new horizon for VCD spectroscopy. Solid state and time-step VCD methods were developed in determining the mechanism of chirality amplification from the microscopic to supramolecular scales. The VCD signals were enhanced in the following three cases: (i) chiral gels with hundreds of molecules arranged in stereoregularity, (ii) chiral metal complexes with low-lying excited states in the IR region, and (iii) a molecular pair interacting stereoselectively on a solid surface. Finally, we describe an on-going project involving the construction of a multi-dimensional VCD system.
-end-


Ehime University

Related Spectroscopy Articles from Brightsurf:

Perspectives of infrared spectroscopy in quantitative estimation of proteins
The present review describes the basic principle and the instrumentation of IR spectroscopy along with its advancements.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Properties of catalysts studied with gamma ray resonance
Steam-assisted oil extraction methods for heavy deposits have long been the focus of attention at Kazan Federal University.

Researchers demonstrate record speed with advanced spectroscopy technique
Researchers have developed an advanced spectrometer that can acquire data with exceptionally high speed.

Spectroscopy approach poised to improve treatment for serious heart arrhythmia
Researchers have demonstrated that a new mapping approach based on near infrared spectroscopy can distinguish between fat and muscle tissue in the heart.

Late blight research pairs spectroscopy with classic plant pathology diagnostics
Gold and colleagues at the University of Wisconsin-Madison recently published research showing how they used contact spectroscopy to non-destructively sense how plant pathogens differentially damage, impair, and alter plant traits during the course of infection.

Doing more with terahertz: Simplifying near-infrared spectroscopy systems
Researchers from Beihang University, China, and Tokushima University, Japan, have developed a terahertz spectroscopy scheme that offers outstanding resolution using a single laser.

A new horizon for vibrational circular dichroism spectroscopy
(1) The development of solid state and time-step VCD methods opened a new horizon to reveal the mechanism of chirality amplification from microscopic to supramolecular scales.

Unraveling the optical parameters: New method to optimize plasmon enhanced spectroscopy
Plasmon enhanced spectroscopies allow to reach single molecule sensitivity and a lateral resolution even down to sub-molecular resolution.

Nanoscale spectroscopy review showcases a bright future
A new review authored by international leaders in their field, and published in Nature, focuses on the luminescent nanoparticles at the heart of many advances and the opportunities and challenges for these technologies to reach their full potential.

Read More: Spectroscopy News and Spectroscopy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.