UCLA scientists image how Parkinson's genes misfire in mice

May 29, 2002

UCLA scientists have developed a fast new way to image how thousands of genes misfire proteins in a mouse model of Parkinson's disease. The approach may provide a research blueprint for pinpointing the abnormal brain regions linked to autism and schizophrenia.

The new findings are reported in the June edition of Genome Research.

Last year, UCLA pharmacologist Desmond Smith developed a new method to rapidly track how genes express proteins in the human brain. Called "voxelation," the approach involves cutting the brain into cubes, then using DNA chip technology and math to reconstruct gene expression patterns in three-dimensional images.

This time, Smith used voxelation to compare gene expression in the brains of mice. Half of the mice received drugs to induce Parkinson's disease. The UCLA team analyzed the brain cubes with DNA chips to track the expression of 9,000 genes simultaneously. They then combined the 9,000 resulting images to visualize how the genes construct the brain.

When they compared the colored brain images of the healthy and diseased mice, Smith and his colleagues discovered that the brains of the mice with Parkinson's disease showed an abnormal shift in gene activity. The patterns of gene expression had moved and were not located in the brain where they should have been.

"This approach identifies which genes play a role in abnormal brain function and where they are located," said Smith, UCLA assistant professor of molecular and medical pharmacology. "We can use this information to narrow down the brain regions linked to genetic disorders and pinpoint the genes responsible for causing them."
The UCLA study was funded by the National Institute of Drug Abuse, Staglin Music Festival, National Alliance for Research on Schizophrenia and Depression, National Science Foundation, National Foundation for Functional Brain Imaging, Dana Foundation, Merck Genome Research Institute and W.M. Keck Foundation.

University of California - Los Angeles

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.