Why have sex? The answer is not as simple as we thought

May 29, 2003

Theories abound as to why organisms favour sexual reproduction, but testing these has been notoriously difficult. A common view is that sexual reproduction helps to reduce the effects of damaging mutations within a population. Now researchers from the Rockefeller University have tested this premise, using careful measurements of bacterial populations, and provide evidence against it.

The research published today in Journal of Biology examines how mutant bacteria respond to different forms of stress, from cold temperature to the inhibition of protein synthesis. Prof. Stanislas Leibler and Dr. Roy Kishony found that, on average, mutants fare better when they are stressed.

"In contrast to the perception that stress always reduces the organism's ability to tolerate mutations, our measurements identified stresses that do the opposite - that is, despite decreasing wild-type growth, on average they alleviate the effect of deleterious mutation," write the authors.

The scientists measured the 'fitness' of 65 E. coli strains carrying individual mutations and 12 control strains under normal and stressful conditions, by calculating their growth rates. To do this they developed a method that is a thousand times more sensitive than current methods at measuring bacterial growth rates. All the bacterial strains tested were engineered so that they produced an enzyme from fireflies called luciferase, which emits light. The number of bacteria in a population could then be counted by measuring how much light those bugs emitted. Comparing the rates of growth of control and mutant cells under the different environmental conditions showed that on average, the difference in growth rate was smaller when the bacteria were stressed.

The advantage of sexual reproduction is widely held to be that it allows harmful mutations to be efficiently purged from the genome. Recombination of DNA during sexual reproduction splits up pairs of mutations, increasing the fitness of any progeny. For this to be an evolutionary advantage, the effect of two harmful mutations must be additive, or worse.

Two of the stressful conditions studied by Kishony and Leibler involved treating mutant bacterial cells with antibiotics that specifically target one molecular pathway. This is similar to introducing a second mutation into those cells. Yet on average the stress had far less impact on the growth rate of mutant cells than on that of wild type cells. If the stress (the second mutation) leads to a defined decline in growth rate, this observation suggests that the second mutation reduces the negative effect of the first. The authors also looked at this result in another way. By drawing a graph showing the decline in growth rate under normal and adverse conditions, as the number of mutations in the bacteria increased they could see that the slope of the line for growth under stressful conditions was shallowest. These results were extrapolated to see what would happen when the bugs contained increasing numbers of mutations. In doing this, the researchers assumed that increasing the number of mutations increased the severity of their combined effect in a linear logarithmic fashion. When they did this the lines crossed. This "...would imply that, on average, the stress increases the absolute growth rate of bacteria carrying enough random mutations". As this possibility is "unrealistic", the authors suggest instead that increasing the number of mutations does not increase the severity of their effect in this way, but that together the mutations are less harmful than they would be if their effect was additive.

Most higher organisms reproduce sexually, despite the obvious advantages of asexual reproduction, such as the higher percentage of the population that can reproduce. This means that there must be selective forces that confer an advantage on sexuality and genetic recombination. The new research from Kishony and Leibler suggests that this advantage may not be as simple as genetic recombination effectively removing harmful mutations from a genome.
This article is freely available online, according to BioMed Central's policy of open access to research articles:

Environmental stresses can alleviate the average deleterious effect of mutations
Roy Kishony and Stanislas Leibler
Journal of Biology 2003: 2:14

Please publish the URL in any news report so that your readers will be able to read the original paper.

Contact one of the authors Dr. Roy Kishony for further information about this research by email: kishonr@rockefeller.edu

Alternatively contact Gemma Bradley by email at press@biomedcentral.com or by phone on 44-207-323-0323.

Journal of Biology (http://jbiol.com) is published by BioMed Central (http://www.biomedcentral.com), an independent online publishing house committed to providing immediate free access to peer-reviewed biological and medical research. This commitment is based on the view that open access to research is essential to the rapid and efficient communication of science. In addition to open-access original research, BioMed Central also publishes reviews and other subscription-based content.

BioMed Central

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.