Climate change signal detected in the Indian Ocean

May 29, 2007

The signature of climate change over the past 40 years has been identified in temperatures of the Indian Ocean near Australia.

"From ocean measurements and by analysing climate simulations we can see there are changes in features of the ocean that cannot be explained by natural variability," said CSIRO oceanographer Dr Gael Alory.

"These oceanic changes are almost certainly linked to changes in the heat structure of the atmosphere and have led to a rise in water temperatures in the sub-tropical Indian Ocean of around two degrees celsius.

"At the same time, we are seeing changes in ocean circulation in tropical regions as a result of a long-term weakening of the Pacific Ocean trade winds. This affects sea surface temperature in regions relevant to the source and distribution of rainfall across southern Australia," Dr Alory said.

The research - by Dr Alory, his CSIRO Wealth from Oceans National Research Flagship colleague, Dr Gary Meyers, and CSIRO Marine and Atmospheric's Dr Susan Wijffels - has recently appeared in the journal, Geophysical Research Letters. The paper examines trends in Indian Ocean temperatures over 40 years that can help scientists and resource managers understand fluctuations in rainfall patterns over southern Australia.

The research, contributing to the Australian Climate Change Science Program and partly funded by the South East Australia Climate Initiative, combined access to ocean observations using the volunteer 'ships of opportunity' program and a set of models used by scientists in developing the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment. Thanks to the operators and crew of commercial ships, Australian scientists have access to a regular series of ocean measurements to a depth of 800 metres across the Indian Ocean.

The team's key findings were: Dr Alory says the research confirmed a long-held view that temperature changes in the Pacific and Indian oceans can be partly explained by the effect of the 'Indonesian throughflow' - a system of currents which transports water between the oceans through the maze of straits and passages in the Indonesian Archipelago.

"The cooling is occurring between Australia and Indonesia where the Indonesian throughflow emerges into the Indian Ocean and is linked to the observed weakening of Pacific Ocean trade-winds," he says. The models also helped to explain trends in the subtropical Indian Ocean temperatures and changes in relevant ocean features. In this area, the deep-reaching warming is due to a strengthening of westerly winds drawing a southward shift in ocean current patterns. These findings are consistent with research in the South Atlantic and South Pacific ocean basins.

He said that the change in atmospheric conditions altering ocean temperatures - weakening of Pacific Ocean trade winds and strengthening of westerly winds - have been mostly attributed to human activity: the production of aerosols (tiny atmospheric particles), ozone depletion, and greenhouse gases. Strengthening westerlies are related to changes in the Southern Annular Mode - an atmospheric feature similar to the El Nino Southern Oscillation and considered the dominant influence on Southern Hemisphere atmospheric variability.

Dr Alory said climate models used in the IPCC Fourth Assessment show that changes in westerly wind patterns are expected to intensify in a global warming scenario and to accentuate the southward shift in sub-tropical ocean circulation patterns.
-end-


CSIRO Australia

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.