Common treatment for methamphetamine overdose may damage brain cells

May 29, 2007

WASHINGTON, DC May 29, 2007 - A common antipsychotic drug used in emergency rooms to treat methamphetamine overdose damages nerve cells in an area of the brain known to regulate movement, a new study shows.

The findings, derived from experiments with rats, indicate that only the combination of the medication, haloperidol, and methamphetamine causes the destructive effects, not either one alone. Senior author Bryan Yamamoto, PhD, and his team at Boston University School of Medicine suspect the damage results from the exaggerated stimulation of cells by the amino acid glutamate, which proves toxic to cells producing the neurotransmitter gamma-aminobutyric acid (GABA). Their results are published in the May 30 issue of The Journal of Neuroscience.

"This work in laboratory animals raises immediate concerns that a standard treatment for methamphetamine overdose in humans might worsen drug abuse-related brain injuries," says William Carlezon, PhD, at Harvard's McLean Hospital, who was not affiliated with the study. "A crucial next step is to determine how atypical antipsychotic medications would affect methamphetamine toxicity in the same model."

The rats in the experiment were injected with either methamphetamine or a saline solution over a period of eight hours. When the rats were given haloperidol before and nearly halfway through the eight-hour period, Yamamoto and his colleagues noted more than a fivefold rise in base levels of glutamate in the substantia nigra, a part of the brain known to play a role in movement disorders such as Huntington's disease.

After examining the long-term effects of the combination, they found that glutamate concentrations in the substantia nigra were twice as high in methamphetamine-treated rats as in saline-treated ones two days after injections. Yamamoto and his colleagues were able to link this rise in glutamate to the death of GABA-containing cells in one part of the substantia nigra. This may predispose some people who have been treated for a methamphetamine overdose to seizures and the development of movement disorders, they say, although the study did not measure movement specifically.

In addition to future studies of other antipsychotic medications, says Yamamoto, "we hope to examine if the loss of cells results in abnormal involuntary movements resembling Tourette's syndrome and Huntington's disease."
-end-
The work was a supported by grants from the National Institutes of Health and a gift from Hitachi America.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 36,500 basic scientists and clinicians who study the brain and nervous system. Yamamoto can be reached at bkyam@bu.edu.

Society for Neuroscience

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.