Nav: Home

A network of crystals for long-distance quantum communication

May 29, 2017

Quantum physic can guarantee that a message has not be intercepted before reaching its destination. Thanks to the laws of quantum physic, a particle of light - a photon - can be in two distinct states simultaneously, comparable to a coin thrown in the air, which is virtually both head and tail before reaching the ground. Like when the coin is grabbed, this superposition of states is destroyed as soon as it is read. This peculiar feature allow one to detect an evil eavesdropper when sending a message. However, this technique is so far limited to short distances. In order to extend the reach of these quantum communications, researchers from the University of Geneva (UNIGE), Switzerland, have demonstrated a novel protocol based on a crystal than can emit quantum light as well as store it for arbitrary long times. This work, to appear in Physical Review Letters, paves the way for a future quantum repeater.

Quantum superposition is one of the fascinating features of quantum physic. "In order to test the security of communication link, we can use particles of light, photons, onto which we encode quantum bits (analogous to the bit used in computing) ", explains Cyril Laplane, a researcher in the Group of Applied Physics at UNIGE. He continues: "We then take advantage of the properties of quantum superposition, allowing the photon to be simultaneously in two states, to test the security of a communication link". Indeed if the photon is intercepted and read, the superposition of states is lost, only one of the two states remains. Hence, the recipient can know if the message has been intercepted.

The need for quantum repeaters

Since this protocol relies on the use of single photons, there is an unneglectable chance of losing the particles when they propagate in traditional communication links such as the optical fiber. This problem becomes more and more critical with the distance. In order to communicate over long distances, one would need repeaters, which amplify and rebroadcast the signal. It is however impossible to use such procedure in quantum communication without destroying the superposition of states. Physicists need to build a quantum repeater able to store the dual character of the photon but also produce such state, a true challenge.

A crystal based solution

To build a quantum repeater, scientists have investigated a lot atomic gases, which usually require heavy experimental apparatus. "We are using a crystal capable of storing quantum state of light. It possesses the advantage of being relatively simple to use with potential for very long storage times", clarifies Jean Etesse, a co-author of the paper. These crystals are able to absorb light and restore it later, without reading the information encoded on it. Furthermore, they can generate single photons and store them on demand. Another major asset is their potential for miniaturisation.

Since the crystal is the source and memory for quantum information, it simplifies the protocol for quantum repeaters and lays the foundation of a quantum internet. Physicists at UNIGE are already working on the creation of an elementary link of quantum communication using a repeater.

Université de Genève

Related Photons Articles:

Quantum physics: Ménage à trois photon-style
When two photons become entangled, the quantum state of the first will correlate perfectly with the quantum state of the second.
Converting absorbed photons into twice as many excitons: Successful high-efficiency energy conversion with organic monolayer on gold nanocluster surface
A group of researchers from Kobe and Keio universities found that when light was exposed to the surface of a tetracene alkanethiol-modified gold nanocluster, which they developed themselves, twice as many excitons could be converted compared to the number of photons absorbed by the tetracene molecules.
Illinois researchers create first three-photon color-entangled W state
Researchers at the University of Illinois at Urbana-Champaign have constructed a quantum-mechanical state in which the colors of three photons are entangled with each other.
Robert Alfano team identifies new 'Majorana Photons'
Hailed as a pioneer by Photonics Media for his previous discoveries of supercontinuum and Cr tunable lasers, City College of New York Distinguished Professor of Science and Engineering Robert R.
Dresden physicists use nanostructures to free photons for highly efficient white OLEDs
Thanks to intensive research in the past three decades, organic light-emitting diodes (OLEDs) have been steadily conquering the electronics market -- from OLED mobile phone displays to roll-out television screens, the list of applications is long.
Generating high-quality single photons for quantum computing
MIT researchers have designed a way to generate, at room temperature, more single photons for carrying quantum information.
Photons trained for optical fibre obstacle course will deliver stronger cyber security
Researchers from the NUS-Singtel Cyber Security Research & Development Laboratory demonstrate a way to improve quantum key distribution over fiber networks.
Researchers pinpoint origin of photons in mysterious gamma-ray bursts
Scientists from the RIKEN Cluster for Pioneering Research and collaborators have used simulations to show that the photons emitted by long gamma-ray bursts -- one of the most energetic events to take place in the universe -- originate in the photosphere -- the visible portion of the 'relativistic jet' that is emitted by exploding stars.
Entangling photons of different colors
Researchers at the National Institute of Standards and Technology (NIST) have developed a novel way to entangle two photons--one with a wavelength suitable for quantum-computing devices and the other for fiber-optics transmissions.
Quantum dots can spit out clone-like photons
MIT and ETH Zurich researchers have produced coherent single photon emitters, a key component for future quantum computers and communications systems.
More Photons News and Photons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.