Nav: Home

Death by volcano?

May 29, 2017

Anyone concerned by the idea that people might try to combat global warming by injecting tons of sulfate aerosols into Earth's atmosphere may want to read an article in the May 1, 2017 issue of the journal Geology.

In it, a Washington University in St. Louis scientist and his colleagues describe what happened when pulses of atmospheric carbon dioxide and sulfate aerosols were intermixed at the end of the Ordivician geological period more than 440 millions years ago.

The counterpart of the tumult in the skies was death in the seas. At a time when most of the planet north of the tropics was covered by an ocean and most complex multicellular organisms lived in the sea, 85 percent of marine animal species disappeared forever. The end Ordivician extinction, as this event was called, was one of the five largest mass extinctions in Earth's history.

Although the gases were injected into the atmosphere by massive volcanism rather than prodigious burning of fossil fuels and under circumstances that will never be exactly repeated, they provide a case history that reveals the potential instability of planetary-scale climate dynamics.

Figuring out what caused the end Ordivician extinction or any of the other mass extinctions in Earth's history is notoriously difficult, said David Fike, associate professor of earth and planetary sciences in Arts & Sciences and a co-author on the paper.

Because the ancient atmospheres and oceans have long since been altered beyond recognition, scientists have to work from proxies, such as variations in oxygen isotopes in ancient rock, to learn about climates long past. The trouble with most proxies, said Fike, who specializes in interpreting the chemical signatures of biological and geological activity in the rock record, is that most elements in rock participate in so many chemical reactions that a signal can often be interpreted in more than one way.

But a team led by David Jones, an earth scientist at Amherst College, was able to bypass this problem by measuring the abundance of mercury. Today, the primary sources of mercury are coal-burning power plants and other anthropogenic activities; during the Ordivician, however, the main source was volcanism.

Volcanism coincides with mass extinctions with suspicious frequency, Fike said. He is speaking not about an isolated volcano but rather about massive eruptions that covered thousands of square kilometers with thick lava flows, creating large igneous provinces (LIPs). The most famous U.S. example of a LIP is the Columbia River Basalt province, which covers most of the southeastern part of the state of Washington and extends to the Pacific and into Oregon.

Volcanoes are plausible climate forcers, or change agents, because they release both carbon dioxide that can produce long-term greenhouse warming and sulfur dioxide that can cause short-term reflective cooling. In addition, the weathering of vast plains of newly exposed rock can draw down atmospheric carbon dioxide and bury it as limestone minerals in the oceans, also causing cooling.

When Jones analyzed samples of rock of Ordivician age from south China and the Monitor Range in Nevada, he found anomalously high mercury concentrations. Some samples held 500 times more mercury than the background concentration. The mercury arrived in three pulses, before and during the mass extinction.

But what happened? It had to have been an unusual sequence of events because the extinction (atypically) coincided with glaciation and also happened in two pulses.

As the scientists began to piece together the story, they began to wonder if the first wave of eruptions didn't push Earth's climate into a particularly vulnerable state, setting it up for a climate catastrophe triggered by later eruptions.

The first wave of eruptions laid down a LIP whose weathering then drew down atmospheric carbon dioxide. The climate cooled and glaciers formed on the supercontinent of Gondwana, which was then located in the southern hemisphere.

The cooling might have lowered the tropopause, the boundary between two layers of the atmosphere with different temperature gradients. The second wave of volcanic eruptions then injected prodigious amounts of sulfur dioxide above the tropopause, abruptly increasing the Earth's albedo, or the amount of sunlight it reflected.

This led to the first and largest pulse of extinctions. As ice sheets grew, sea level dropped and the seas became colder, causing many species to perish.

During the second wave of volcanism, the greenhouse warming from carbon dioxide overtook the cooling caused by sulfur dioxide and the climate warmed, the ice melted and sea levels rose. Many of the survivors of the first pulse of extinctions died in the ensuing flooding of habitat with warmer, oxygen-poor waters.

The take-home, said Fike, is that the different factors that affect Earth's climate can interact in unanticipated ways and it is possible that events that might not seem extreme in themselves can put the climate system into a precarious state where additional perturbations have catastrophic consequences.

"It's something to keep in mind when we contemplate geoengineering schemes to mitigate global warming," said Fike, who teaches a course where students examine such schemes and then evaluate their willingness to deploy them.
-end-


Washington University in St. Louis

Related Mercury Articles:

New nanomaterial to replace mercury
Ultraviolet light is used to kill bacteria and viruses, but UV lamps contain toxic mercury.
Wildfire ash could trap mercury
In the summers of 2017 and 2018, heat waves and drought conditions spawned hundreds of wildfires in the western US and in November, two more devastating wildfires broke out in California, scorching thousands of acres of forest, destroying homes and even claiming lives.
Removing toxic mercury from contaminated water
Water which has been contaminated with mercury and other toxic heavy metals is a major cause of environmental damage and health problems worldwide.
Fish can detox too -- but not so well, when it comes to mercury
By examining the tissues at a subcellular level, the researchers discovered yelloweye rockfish were able to immobilize several potentially toxic elements within their liver tissues (cadmium, lead, and arsenic) thus preventing them from interacting with sensitive parts of the cell.
Chemists disproved the universal nature of the mercury test
The mercury test of catalysts that has been used and considered universal for 100 years, turned out to be ambiguous.
Mercury rising: Are the fish we eat toxic?
Canadian researchers say industrial sea fishing may be exposing people in coastal and island nations to excessively high levels of mercury.
New estimates of Mercury's thin, dense crust
Michael Sori, a planetary scientist at the University of Arizona, used careful mathematical calculations to determine the density of Mercury's crust, which is thinner than anyone thought.
Understanding Mercury's magnetic tail
Theoretical physicists used simulations to explain the unusual readings collected in 2009 by the Mercury Surface, Space Environment, Geochemistry, and Ranging mission.
Mercury is altering gene expression
Mercury causes severe neurological disorders in people who have consumed highly contaminated fish.
Climate changes may lead to more poisonous mercury in plankton
Global warming is expected to increase runoff and input of organic matter to aquatic ecosystems in large regions of the Northern hemisphere including the Baltic Sea.
More Mercury News and Mercury Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.