Nav: Home

Cognitive training reduces depression, rebuilds injured brain structure & connectivity after traumatic brain injury

May 29, 2018

New research from the Center for BrainHealth at The University of Texas at Dallas shows that certain cognitive training exercises can help reduce depression and improve brain health in individuals years after they have suffered a traumatic brain injury (TBI).

The recent study, published in Human Brain Mapping, revealed significant reductions in the severity of depressive symptoms, increased ability to regulate emotions, increases in cortical thickness and recovery from abnormal neural network connectivity after cognitive training.

"To our knowledge, this is the first study to report brain change associated with reduced depression symptoms after cognitive training," said Dr. Kihwan Han, a research scientist at the Center for BrainHealth who works in the lab of Dr. Daniel Krawczyk. Han is the lead author of the study.

"Overall, these findings suggest that cognitive training can reduce depressive symptoms in patients with traumatic brain injury even when the training does not directly target psychiatric symptoms," he said.

A past study involving the same protocol showed cognitive gains as well as similar changes in cortical thickness and neural network connectivity.

This study included 79 individuals with chronic TBI who all were at least six months post-injury. These individuals were randomly assigned into one of two groups: strategy-based training, which used the Strategic Memory Advanced Reasoning Training (SMART) program developed at the center; and information-based training, which used the Brain Health Workshop program. Researchers used the Beck Depressive Inventory to classify 53 of the participants as depressed.

The participants' depressive-symptom severity, psychological functioning scores and data from magnetic resonance imaging brain scans were collected before training, after training and three months post-training. Scans were used to study changes in brain structure and neural network connectivity.

Both training programs consisted of 12 one-and-a half-hour sessions over eight weeks that included quizzes, homework assignments, and projects conducted in small group settings that involved social interactions.

All participants in the depressed group showed significantly reduced depressive symptoms that were associated with improvements in cognitive and daily life functioning. According to Han, the social engagements, cognitive stimulation from new learning opportunities and hope of improvement afforded by both programs may help explain the reductions in depressive symptoms.

Based on the observed brain change patterns, Han suggested that improved emotion regulation also may be related to the reduced depressive symptoms. Over time, the reductions in depression symptom severity correlated with increased cortical thickness within the prefrontal cortex -- an area of the brain responsible for executive functions needed for emotional control -- and reductions in abnormally elevated neural connectivity within this region.

"Identifying what changes are happening in the brain when interventions successfully reduce depressive symptoms could allow us to create more effective, pharmaceutical-free approaches to help alleviate depression in people who experience chronic traumatic brain injury symptoms," said study author Dr. Sandra Bond Chapman, founder and chief director of the Center for BrainHealth, and Dee Wyly Distinguished University Professor.
-end-
Funding for this study was made possible by grants from U.S. Department of Defense (Grant Numbers: W81XWH?11?2?0194, W81XWH?11?2?0195), the Meadows Foundation and a Friends of BrainHealth Distinguished New Scientist Award.

ABOUT THE CENTER FOR BRAINHEALTH®

The Center for BrainHealth®, part of The University of Texas at Dallas, is a research institute committed to enhancing, preserving and restoring brain health across the lifespan. Scientific exploration at the Center for BrainHealth is leading edge, improving lives today and translating groundbreaking discoveries into practical clinical application. By delivering science-based innovations that enhance how people think, work, and live, the Center and its Brain Performance Institute™ are empowering people of all ages to unlock their brain potential. Major research areas include the use of functional and structural neuroimaging techniques to better understand the neurobiology supporting cognition and emotion in health and disease.

Center for BrainHealth

Related Traumatic Brain Injury Articles:

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.
Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.
Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.
Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).
Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.
Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.
Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).
Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.
Traumatic brain injury recovery via petri dish
Researchers in the University of Georgia's Regenerative Bioscience Center have succeeded in reproducing the effects of traumatic brain injury and stimulating recovery in neuron cells grown in a petri dish.
Traumatic brain injury may be associated with increased risk of suicide
An increased risk of suicide was associated with those residents of Denmark who sought medical attention for traumatic brain injury (TBI) compared with the general population without TBI in a study that used data from Danish national registers.
More Traumatic Brain Injury News and Traumatic Brain Injury Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.