Nav: Home

'Fettuccine' may be most obvious sign of life on Mars, researchers report

May 29, 2019

CHAMPAIGN, Ill. -- A rover scanning the surface of Mars for evidence of life might want to check for rocks that look like pasta, researchers report in the journal Astrobiology.

The bacterium that controls the formation of such rocks on Earth is ancient and thrives in harsh environments that are similar to conditions on Mars, said University of Illinois geology professor Bruce Fouke, who led the new, NASA-funded study.

"It has an unusual name, Sulfurihydrogenibium yellowstonense," he said. "We just call it 'Sulfuri.'"

The bacterium belongs to a lineage that evolved prior to the oxygenation of Earth roughly 2.35 billion years ago, Fouke said. It can survive in extremely hot, fast-flowing water bubbling up from underground hot springs. It can withstand exposure to ultraviolet light and survives only in environments with extremely low oxygen levels, using sulfur and carbon dioxide as energy sources.

"Taken together, these traits make it a prime candidate for colonizing Mars and other planets," Fouke said.

And because it catalyzes the formation of crystalline rock formations that look like layers of pasta, it would be a relatively easy life form to detect on other planets, he said.

The unique shape and structure of rocks associated with Sulfuri result from its unusual lifestyle, Fouke said. In fast-flowing water, Sulfuri bacteria latch on to one another "and hang on for dear life," he said.

"They form tightly wound cables that wave like a flag that is fixed on one end," he said. The waving cables keep other microbes from attaching. Sulfuri also defends itself by oozing a slippery mucus.

"These Sulfuri cables look amazingly like fettuccine pasta, while further downstream they look more like capellini pasta," Fouke said. The researchers used sterilized pasta forks to collect their samples from Mammoth Hot Springs in Yellowstone National Park.

The team analyzed the microbial genomes, evaluated which genes were being actively translated into proteins and deciphered the organism's metabolic needs, Fouke said.

The team also looked at Sulfuri's rock-building capabilities, finding that proteins on the bacterial surface speed up the rate at which calcium carbonate - also called travertine - crystallizes in and around the cables "1 billion times faster than in any other natural environment on Earth," Fouke said. The result is the deposition of broad swaths of hardened rock with an undulating, filamentous texture.

"This should be an easy form of fossilized life for a rover to detect on other planets," Fouke said.

"If we see the deposition of this kind of extensive filamentous rock on other planets, we would know it's a fingerprint of life," Fouke said. "It's big and it's unique. No other rocks look like this. It would be definitive evidence of the presences of alien microbes."
-end-
Fouke also is an affiliate professor of microbiology and of the Carl R. Woese Institute for Genomic Biology at the U. of I.

Videos of Sulfuri in hot springs are available here and here.

Editor's notes:

To reach Bruce Fouke, call 217-244-5431; email fouke@illinois.edu.

The paper "Physiology, metabolism, and fossilization of hot-spring filamentous microbial mats" is available online and from the U. of I. News Bureau.

University of Illinois at Urbana-Champaign, News Bureau

Related Mars Articles:

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.
A material way to make Mars habitable
New research suggest that regions of the Martian surface could be made habitable with a material -- silica aerogel -- that mimics Earth's atmospheric greenhouse effect.
Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.
New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
Why we won't get to Mars without teamwork
If humanity hopes to make it to Mars anytime soon, we need to understand not just technology, but the psychological dynamic of a small group of astronauts trapped in a confined space for months with no escape, according to a paper published in American Psychologist, the flagship journal of the American Psychological Association.
More Mars News and Mars Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...