Nav: Home

Intelligent algorithms for genome research

May 29, 2019

Although the importance of machine learning methods in genome research has grown steadily in recent years, researchers have often had to resort to using obsolete software. Scientists in clinical research often did not have access to the most recent models. This will change with the new free open access repository: Kipoi enables an easy exchange of machine learning models in the field of genome research. The repository was created by Julien Gagneur, Assistant Professor of Computational Biology at the TUM, in collaboration with researchers from the University of Cambridge, Stanford University, the European Bioinformatics Institute (EMBL-EBI) and the European Molecular Biology Laboratory (EMBL).

Trained models freely available

"What makes Kipoi special is that it provides free access to machine learning models that have already been trained," says Julien Gagneur. "What we are doing with Kipoi is not just sharing data and software, but sharing models and algorithms that are already trained on the most relevant data. These models are ready to use, because all the cumbersome work of applying them to data has already been done," says Anshul Kundaje, Assistant Professor at Stanford. More than 2,000 trained models are currently freely accessible on Kipoi. In a recent study published in Nature Biotechnology, the researchers show that the new repository will accelerate exchange in the genomics community and thereby advance genome research.

Fast algorithms and easy operation

Because Kipoi simplifies access to already trained models, researchers can perform transfer learning. This means that a model that has already been trained with a particular dataset is capable of learning a similar task faster. Kipoi also simplifies the process of feeding data into the models stored there: Standardized file formats and software frameworks reduce the installation and execution of a model to three simple commands. Those who previously had no experience in machine learning can thus also easily use the repository.

Understanding individual genomes

As Kipoi is oriented towards models that link genotype and phenotype, the new platform will make it easier to identify genetic causes of disease: "Kipoi puts the latest deep learning models trained on massive genomics data at the fingertips of clinical researchers," says Julien Gagneur. "This provides very exciting opportunities to understand individual genomes, for instance to pinpoint genetic variants causing diseases or to interpret mutations occurring in tumors."

However, the extent of the platform's contribution to genomic research will also depend on the genomics community. "We hope that in the future more researchers will bring their models to our repository," says Oliver Stegle, team leader at the EMBL-EBI. "That is the only way we can make genomics analysis accessible and ultimalely make a wider range of predictive machine learning tools available to the genomics community."
-end-


Technical University of Munich (TUM)

Related Learning Articles:

Learning with light: New system allows optical 'deep learning'
A team of researchers at MIT and elsewhere has come up with a new approach to complex computations, using light instead of electricity.
Mount Sinai study reveals how learning in the present shapes future learning
The prefrontal cortex shapes memory formation by modulating hippocampal encoding.
Better learning through zinc?
Zinc is a vital micronutrient involved in many cellular processes: For example, in learning and memory processes, it plays a role that is not yet understood.
Deep learning and stock trading
A study undertaken by researchers at the School of Business and Economics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has shown that computer programs that algorithms based on artificial intelligence are able to make profitable investment decisions.
Learning makes animals intelligent
The fact that animals can use tools, have self-control and certain expectations of life can be explained with the help of a new learning model for animal behavior.
More Learning News and Learning Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.