Unveiling how the genome has condensed itself inside the virus

May 29, 2019

"The motivation of the study was to increase our basic understanding of viral replication, but in the long term this may contribute to tackling viral disease," says the director of the of the project, Associate Professor Juha Huiskonen from the Helsinki Institute of Life Science HiLIFE.

The breakthrough results were achieved using cryogenic electron microscopy, a method that has in recent years revolutionised structural biology--a field of biology that aims to understand how molecules of life work at the atomic level.

Using powerful electron microscopes, the team took tens of thousands of images of highly purified viruses. The images were then combined into three-dimensional models, allowing the scientists to not only see the proteins that make up the shell of the virus, but also, for the first time, to trace the nucleic acid genome inside the protein shell. The genome was seen to form a liquid crystal, a highly condensed and ordered state of matter that is still fluid.

"The degree of condensation is remarkable. To illustrate, if the virus was the size of an exercise ball and the viral genome was thick manila rope, there would be almost 70 metres of such rope stuffed inside the ball," Huiskonen says.

The fluidity of the genome may be required to allow expression of the viral genes in the confines of the viral capsid, but it is still an open question how the virus genome doesn't get entangled in the process. In a follow-up study the team aims to address this very question.

"The virus particles are molecular machines that can be switched on by giving them the right chemical compounds," explains Minna Poranen, university lecturer from the Faculty of Biological and Environmental Sciences of the University of Helsinki.

"When the viruses are carrying out their work, they can be observed at different states. This way we can gain an even better understanding of how these fascinating nanomachines function," adds Huiskonen.
-end-


University of Helsinki

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.