Immune system discovery inspires a new barometer for inflammatory diseases

May 29, 2019

A unique discovery about the nature of neutrophils -- the most numerous white blood cells in the body -- may lead to new models for diagnosing and tracking inflammatory diseases such as cancer and osteoarthritis.

The "first responders" of the body, neutrophils are a class of leukocyte immune cell in the "innate" immune system, which deals with acute infections. Billions of neutrophils are born in the bone's marrow each day to protect the body and attack microbial invaders.

"The general consensus in the past was that there is one kind of neutrophil in circulation in healthy people," says Michael Glogauer, professor at the Faculty of Dentistry and acting chief dentist at the Princess Margaret Cancer Centre.

"We found two distinct neutrophil states in blood, and these populations vary depending on the health of patient and if there are acute or chronic infections," added Glogauer, who is one of the authors of the study, which appeared in Blood Advances this month.

The University of Toronto team discovered this unique subset of immune cells after developing a novel method of preserving and analyzing neutrophils in blood, overcoming a longstanding difficulty in how to study these short-lived and easily activated immune cells.

One population of neutrophils -- primed neutrophils, or pPMNs -- were discovered to be in a state of constant readiness to fight infections, comprising up to 10 per cent of the overall population of neutrophils. These were seen to be in contrast to the more abundant "resting state" neutrophils (rsPMNs), which circulate the blood in a naive state.

The team then tested blood samples from both mice with acute infections and humans with chronic gingivitis, tracking both the prime and resting neutrophils. When an acute infection flares up, the primed warrior cells quickly leave the blood stream and enter the tissues.

In both mouse and human models with acute inflammation, the primed cells disappear from the bloodstream and enter inflamed tissues within 15 minutes. Within one to three hours, the remaining resting state neutrophils also become activated, and follow the initial team into the tissues.

"The current paradigm is that neutrophils are circulating in the blood, just waiting for something to happen, and then they are immediately recruited into tissue and fight infection," says Noah Fine, a postdoctoral fellow at the University of Toronto Faculty of Dentistry and first author of the study.

"That's still true," adds Fine, "but we're now looking at a model with a fine- tuned mechanism. In this model, the neutrophils aren't constantly on a knife's edge, waiting to react to an infection -- that could lead to overexuberant neutrophil responses in healthy individuals."

NEUTROPHIL MODELS FOR DISEASE PREDICTION

The discovery may one day aid in disease detection and monitoring. If the percentage of primed neutrophils in the blood is constant in a healthy state, hovering at around 10 per cent, then it follows that "we can track the state of the activation of the innate immune system where the expectation would be elevated levels of this primed population," says Glogauer.

Blood samples from those who are experiencing inflammatory disease attacks, for instance, can be looked at for the number of primed neutrophils as a barometer of the activation state of the immune system -- telling medical professionals exactly how acute an infection is across a wide range of inflammatory diseases such as cancer, gout, arthritis and diabetes.

Currently, the team is testing neutrophil populations both just before and after cardiovascular surgery, as well as patients with rheumatoid arthritis and periodontitis.

The discovery may also lead to new paradigms for health research.

"The fact that we see this population in mice and that it appears to behave similarly in humans is very exciting," says Fine, who points out that mice and other animal models used in health research sometimes have limitations based on their physiological differences to humans.

The neutrophil populations, in contrast, appear to be similar across mammals, according to the researchers.
-end-
ABOUT THE FACULTY OF DENTISTRY, UNIVERSITY OF TORONTO

Combining the rigours of biological and clinical research with a superior educational experience across a full range of undergraduate and graduate programs - with and without advanced specialty training - the Faculty of Dentistry at the University of Toronto has earned an international reputation as a premier dental research and training facility in Canada. From the cutting-edge science of biomaterials and microbiology, to next-generation nanoparticle and stem cell therapies, to ground-breaking population and access-to-care studies, the mission of the Faculty of Dentistry is to shape the future of dentistry and promote optimal health by striving for integrity and excellence in all aspects of research, education and clinical practice.

University of Toronto - Faculty of Dentistry

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.