Nav: Home

Next frontier in bacterial engineering

May 29, 2020

From bacteria-made insulin that obviates the use of animal pancreases to a better understanding of infectious diseases and improved treatments, genetic engineering of bacteria has redefined modern medicine. Yet, serious limitations remain that hamper| progress in numerous other areas.

A decades-old bacterial engineering technique called recombineering (recombination-mediated genetic engineering) allows scientists to scarlessly swap pieces of DNA of their choosing for regions of the bacterial genome. But this valuable and versatile approach has remained woefully underused because it has been limited mainly to Escherichia coli--the lab rat of the bacterial world--and to a handful of other bacterial species.

Now a new genetic engineering method developed by investigators in the Blavatnik Institute at Harvard Medical School and the Biological Research Center in Szeged, Hungary, promises to super-charge recombineering and open the bacterial world at large to this underutilized approach.

A report detailing the team's technique is published May 28 in PNAS.

The investigators have developed a high-throughput screening method to look for the most efficient proteins that serve as the engines of recombineering. Such proteins, known as SSAPs, reside within phages--viruses that infect bacteria.

Applying the new method, which enables the screening of more than two hundred SSAPs, the researchers identified two proteins that appear to be particularly promising.

One of them doubled the efficiency of single-spot edits of the bacterial genome. It also improved tenfold the ability to perform multiplex editing--making multiple edits genome-wide at the same time. The other one enabled efficient recombineering in the human pathogen Pseudomonas aeruginosa, a frequent cause of life-threatening, hospital-acquired infections, for which there has long been a dearth of good genetic tools.

"Recombineering will be a very critical tool that will augment our DNA writing and editing capabilities in the future, and this is an important step in improving the efficiency and reach of the technology," said study first author Timothy Wannier, research associate in genetics in lab of George Church, the Robert Winthrop Professor of Genetics at HMS.

Previous genetic engineering methods, including CRISPR Cas9-based gene-editing, have been ill-suited to bacteria because these methods involve "cutting and pasting" DNA, the researchers said. This is because, unlike multicellular organisms, bacteria lack the machinery to repair double-stranded DNA breaks efficiently and precisely, thus DNA cutting can profoundly interfere with the stability of the bacterial genome, Wannier said. The advantage of recombineering is that it works without cutting DNA.

Instead, recombineering involves sneaking edits into the genome during bacterial reproduction. Bacteria reproduce by splitting in two. During that process, one strand of their double-stranded, circular DNA chromosomes goes to each daughter cell, along with a new second strand that grows during the early stages of fission. The raw materials for recombineering are short, approximately 90 base strands of DNA that are made to order. Each strand is identical to a sequence in the genome, except for edits in the strand's center. These short strands slip into place as the second strands of the daughter cells grow, efficiently incorporating the edits into their genomes.

Among many possible uses, edits might be designed to interfere with a gene in order to pinpoint its function or, alternatively, to improve production of a valuable bacterial product. SSAPs mediate attachment and proper placement of the short strand within the growing new half of the daughter chromosome.

Recombineering might enable the substitution of a naturally occurring bacterial amino acid--the building blocks of proteins--with an artificial one. Among other things, doing so could enable the use of bacteria for environmental cleanup of oil spills or other contaminants, that depend on these artificial amino acids to survive, meaning that the modified bacteria could be easily annihilated once the work is done to avoid the risks of releasing engineered microbes into the environment, Wannier said.

"The bacteria would require artificial amino acid supplements to survive, meaning that they are preprogrammed to perish without the artificial feed stock," Wannier added.

A version of recombineering, called multiplex automated genome engineering (MAGE), could greatly boost the benefits of the technique. The particular advantage of MAGE is its ability to make multiple edits throughout the genome in one fell swoop.

MAGE could lead to progress in projects requiring reengineering of entire metabolic pathways, said John Aach, lecturer in genetics at HMS. Case in point, Aach added, are large-scale attempts to engineer microbes to turn wood waste into liquid fuels.

"Many investigator-years' effort in that quest have made great progress, even if they have not yet produced market-competitive products," he said.

Such endeavors require testing many combinations of edits, Aach said.

"We have found that using MAGE with a library of DNA sequences is a very good way of finding the combinations that optimize pathways."

A more recent descendant of recombineering, named directed evolution with random genomic mutations (DIvERGE), promises benefits in the fight against infectious diseases and could open new avenues for tackling antibiotic resistance.

By introducing random mutations into the genome, DIvERGE can speed up natural bacterial evolution. This helps researchers quickly uncover changes that could arise naturally in harmful bacteria that would make them resistant to antibiotic treatment, explained Akos Nyerges, research fellow in genetics in Church's lab at HMSs, previously at the Biological Research Center of the Hungarian Academy of Sciences.

"Improvements in recombineering will allow researchers to more quickly test how bacterial populations can gain resistance to new antibacterial drugs, helping researchers to identify less resistance-prone antibiotics," Nyerges said.

Recombineering will likely usher in a whole new world of applications that would be hard to foresee at this juncture, the researchers said.

"The new method greatly improves our ability to modify bacteria," Wannier said. "If we could modify a letter here and there in the past, the new approach is akin to editing words all over a book and doing so opens up the scientific imagination in a way that was not previously possible."
-end-
Church was a principal investigator on the study. Co-investigators on the research included Helene Kuchwara, Márton Czikkely, Dávid Balogh, Gabriel Filsinger, Nathaniel Borders, Christopher Gregg, Marc Lajoie, Xavier Rios, and Csaba Pál.

Paper DOI: https://doi.org/10.1073/pnas.2001588117

The work was funded by the U.S. Department of Energy (DE-FG02-02ER63445), the European Research Council (H2020-ERC-2014-CoG 648364), GINOP (MolMedEx TUMORDNS) GINOP-2.3.2-15-2016-00020, GINOP (EVOMER) GINOP-2.3.2-15-2016-00014; Momentum Program of the Hungarian Academy of Sciences, an EMBO Long-Term Fellowship, the Szeged Scientists Academy under the sponsorship of the Hungarian Ministry of Human Capacities (EMMI: 13725-2/2018/INTFIN), by the UNKP-18-2 New the National Excellence Program of the Hungarian Ministry of Human Capacities and UNKP 10-2, and the New National Excellence Program of the Hungarian Ministry for Innovation and Technology.

Relevant disclosures:

Church has related financial interests in enEvolv, GRO Biosciences and 64-x; with some coauthors; and has submitted a patent application relating to pieces of this work (WO2017184227A2). Wannier, Church and another coauthor have submitted a patent application related to the improved SSAP variants referenced here. Nyerges is listed as an inventor on a patent application related to DIvERGE.

Harvard Medical School

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.