Students invent voice-activated grasping tool for disabled man

May 30, 2002

Using two motors, speech-recognition software and an exo-skeleton inspired by science fiction, three Johns Hopkins University undergraduates have designed and built a muscle enhancement device that will help a disabled man grasp and lift a cup, a book and other household items. By uttering commands such as "open" and "raise," the man will receive mechanical help in moving his fingers and bending his elbow. The motorized plastic shell will fit over the right arm of the man, who has an extremely rare degenerative muscle disorder called inclusion body myositis

This device, which could be adapted for other people with disabilities, was developed during two semesters by students in the Department of Mechanical Engineering's Senior Design Project course. The project originated last summer when the man with the muscle disease sought help from Volunteers for Medical Engineering, a nonprofit Baltimore group that uses technology to assist people with disabilities. The client, who asked that his name not be disclosed, explained that his nerves were intact, meaning that he could control the placement of his fingers around an object. But progressive muscle deterioration left him unable to grasp and lift even small objects.

To help him, the VME sponsored a project in the Johns Hopkins course. The task of designing and building the device went to a team consisting of three senior students: Jonathan Hofeller, 21, a mechanical engineering major from Needham, Mass.; Christina Peace, 21, a biomedical engineering major from Baltimore; and Nathaniel Young, 22, a biomedical engineering major from Dayton, Ohio. The students researched prosthetic limbs and, taking a cue from props featured in the film "Aliens," they designed a plastic exo-skeleton that could slide over the client's right hand and arm. To help move his fingers and elbow, the students tested and rejected systems using electromagnets and air pressure systems. They finally settled on two small but powerful stepper motors. These could move the fingers and elbow in small, slow increments, allowing the client to clasp a cup firmly without crushing it. In addition, these motors did not require continuous electrical current to stay in position, which preserves battery power. The students linked the motors to a series of cables and springs to enable the device to move the man's arm into position and help his fingers grasp and release.

The students opted for voice recognition software as an easy way for the disabled man to control the grasping device. After the software is trained to the client's voice, the man will first say "arm" or "hand" to take command of one of the two motors. The elbow motor will then respond to "raise," "down" or "stop." The hand motor will respond to "open," close" and "stop." The device is hard-wired to a control box that contains a miniature computer and two programs that turn the voice commands into signals that tell the motors how to operate the bending and grasping motions. The unit is powered by a rechargeable 12-volt lead-acid battery commonly used for remote-control model boats and airplanes. The control box fits inside a small pack the man can carry on his waist, making the grasping the device fully portable.

"The students did a wonderful job," said Jan Hoffberger, executive director of Volunteers for Medical Engineering. "They came up with a very creative design for the device. They purposely set it up to move very slowly, so that at any time in the grasping and lifting process, our client can tell it to stop. We believe he will find it very helpful."

The students had to work within a budget of $10,000; they ended up spending about $8,000 on the device. Designing and building it helped the undergraduates to understand some of the challenges that working engineers face. "In a textbook, there is always one right answer," said Young. "In this project there were many different ways we could go, but once we were committed we had to go in that direction." His teammate, Hofeller, said, "The project involved a lot of trial and error, but it was fun to apply what we've been learning." The third team member, Peace, added, "When you're working out a problem in an engineering book, the conditions are ideal. In this project, the conditions were not perfect, but we still got the job done."

The grip enhancing device was one of 11 Johns Hopkins projects completed this year by undergraduates in the Senior Design Project course. The class is taught by Andrew F. Conn, a Johns Hopkins graduate with more than 30 years of experience in public and private research and development. Each team of two or three students, working within budgets of up to $10,000, had to design a device, purchase or fabricate the parts, and assemble the final product. Corporations, government agencies and nonprofit groups provided the assignments and funding. The course is traditionally a well-received hands-on engineering experience for Johns Hopkins undergraduates.
Color images of the device and the students are available; contact Phil Sneiderman or see this page or this one.

Related Links:
Johns Hopkins Department of Mechanical Engineering
Volunteers for Medical Engineering

3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 / Fax (410) 516-5251

Johns Hopkins University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to