Faulty gene stops cell 'antennae' from transmitting

May 30, 2010

An international group of researchers has identified the genetic cause of an inherited condition that causes severe fetal abnormalities.

The work, co-led by geneticists at the UCSD Institute for Genomic Medicine, together with colleagues from institutes and universities in Paris, Rome and England, should allow couples at risk of conceiving babies with the profoundly disabling Meckel-Gruber and Joubert syndromes to be identified beforehand through genetic screening.

The researchers' findings - which show how the disease gene stops cells' finger-like antennae or 'cilia' from detecting and relaying information - may ultimately lead to treatments for more common related disorders, such as spina bifida, retinal blindness and polycystic kidney disease. The paper will be published May 30 issue in Nature Genetics.

"By understanding the science behind this relatively rare condition, we can gain insight into other pediatric diseases that are far more frequent," said UCSD researcher Joseph Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego School of Medicine and Howard Hughes Medical Institute Investigator, who directed the research. "Spina bifida, for example, is one of the most common birth defects, affecting one in every 1000 newborns."

Meckel-Gruber syndrome and Joubert syndrome are part of a wider family of disorders known as 'ciliopathies' - so-called because the cilia are not working as they should and do not respond properly to signals.

This lack of communication can prevent growing embryos from developing a correct neural tube, which leads to abnormalities of the brain. Affected embryos can also develop abnormalities in the eyes, extra fingers or toes, and multiple cysts in their kidneys.

"These abnormalities are often observed in prenatal ultrasounds, but expectant parents want to have a sense of what their child will be like, will he or she learn to walk, talk, and see," said lead author Professor Enza Maria Valente from the Mendel Institute in Rome. "This type of research can give us answers to these important questions."

To find the gene responsible for Meckel-Gruber and Joubert syndromes, the researchers examined DNA from families with a history of the disorder, from skin cells donated by patients, and from cells grown in the laboratory. They also studied zebrafish, which were used because the embryos are transparent during development.

The work identified a previously unknown gene - TMEM216 - as a cause of Meckel-Gruber and Joubert syndromes. They also showed that the faulty TMEM216 gene stopped cells from making a protein that is needed for cilia signalling.

Because Meckel-Gruber and Joubert syndromes are recessive genetic disorders, only couples who both have a copy of the disease gene are at risk of conceiving babies with these birth defects. The condition is more common in certain close-knit populations where the gene has been passed down from generation to generation. These include families of Ashkenazi Jewish origin.

"Accurate genetic testing for TMEM216 will be particularly important for families throughout the world that have a history of ciliopathies caused by mutations to this gene," said Professor Attie-Bittach from the University of Paris.

"Now that we have identified a gene that causes Meckel-Gruber syndrome and Joubert syndrome, the role of particular signalling pathways as the embryo is developing can also be more clearly understood," added Professor Colin Johnson from the University of Leeds in the UK.
-end-
Additional contributors from the Neurogenetics Laboratory, Institute for Genomic Medicine, Department of Neurosciences and Pediatrics, Howard Hughes Medical Institute at UC San Diego include Jeong Ho Lee, Jennifer L Silhavy, Ji Eun Lee, Jerlyn C Tolentino and Dominika Swistun.

This work was supported by the National Institutes of Health, the Italian Ministry of Health, Pierfranco and Luisa Mariani Foundation, American Heart Association, BDF Newlife, the Medical Research Council and the Sir Jules Thorn Charitable Trust, l'Agence National pour la Recherche, Burroughs Wellcome Fund, Howard Hughes Medical Institute and a National Research Service Award fellowship.

Media contact: Debra Kain, 619-543-6163, ddkain@ucsd.edu

University of California - San Diego

Related Birth Defects Articles from Brightsurf:

Assessing cancer diagnosis in children with birth defects
In this study, led by Baylor College of Medicine and Texas Children's Hospital, researchers provide a better understanding of cancer risk in children with birth defects.

Some antibiotics prescribed during pregnancy linked with birth defects
Children of mothers prescribed macrolide antibiotics during early pregnancy are at an increased risk of major birth defects, particularly heart defects, compared with children of mothers prescribed penicillin, finds a study published by The BMJ today.

Weight-loss surgery cuts risk of birth defects
Children born to women who underwent gastric bypass surgery before becoming pregnant had a lower risk of major birth defects than children born to women who had severe obesity at the start of their pregnancy.

Defective cilia linked to heart valve birth defects
Bicuspid aortic valve (BAV), the most common heart valve birth defect, is associated with genetic variation in human primary cilia during heart valve development, report Medical University of South Carolina researchers in Circulation.

Findings shed new light on why Zika causes birth defects in some pregnancies
A new study shows that the risk of giving birth to a child with microcephaly might be related to how the immune system reacts against the Zika virus -- specifically what kind of antibodies it produces.

Severe air pollution can cause birth defects, deaths
In a comprehensive study, researchers from Texas A&M University have determined that harmful particulate matter in the atmosphere can produce birth defects and even fatalities during pregnancy using the animal model.

Famous cancer-fighting gene also protects against birth defects
New research has revealed how the famous tumour suppressor gene p53 is surprisingly critical for development of the neural tube in female embryos.

Biomarkers may predict Zika-related birth defects
The highest risk of birth defects is from Zika virus infection during the first and second trimester.

After 60 years, scientists uncover how thalidomide produced birth defects
More than 60 years after the drug thalidomide caused birth defects in thousands of children whose mothers took the drug while pregnant, scientists at Dana-Farber Cancer Institute have solved a mystery that has lingered ever since the dangers of the drug first became apparent: how did the drug produce such severe fetal harm?

Antiepileptic drug induces birth defects in frogs
A common drug for treating epileptic seizures may lead to birth defects if used during pregnancy by interfering with glutamate signaling in earliest stages of nervous system development, finds a study in frogs published in JNeurosci.

Read More: Birth Defects News and Birth Defects Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.