Office bacteria all around us, especially in men's offices

May 30, 2012

Men's offices have significantly more bacteria than women's, and the office bacterial communities of New York and San Francisco are indistinguishable, according to a study published May 30 in the open access journal PLoS ONE.

"Humans are spending an increasing amount of time indoors, yet we know little about the diversity of bacteria and viruses where we live, work and play," remarks Dr. Scott Kelley, lead author on the study. "This study provides detailed baseline information about the rich bacterial communities in typical office settings and insight into the sources of these organisms."

The report includes the characterization of bacterial identity and abundance in offices in New York, San Francisco, and Tucson. The researchers, led by Scott Kelley of University of California, San Diego, identified more than 500 bacterial genera in offices in the three cities, the most abundant of which tended to come from human skin or the nasal, oral, or intestinal cavities. They also found that chairs and phones had a high abundance of bacteria, while the abundance on the desktop, keyboard, and mouse was somewhat lower.

They also found that offices inhabited by men had a higher bacterial abundance than women's, but the diversity of the communities didn't show any significant differences.
-end-
Citation: Hewitt KM, Gerba CP, Maxwell SL, Kelley ST (2012) Office Space Bacterial Abundance and Diversity in Three Metropolitan Areas. PLoS ONE 7(5): e37849. doi:10.1371/journal.pone.0037849

Financial Disclosure: This research was funded by grants from San Diego State University, the Clorox Corporation and the Alfred P. Sloan Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interest Statement: The authors received funding from commercial funder (Clorox Corporation). There are no patents, products in development or marketed products etc. to declare. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.

PLEASE LINK TO THE SCIENTIFIC ARTICLE IN ONLINE VERSIONS OF YOUR REPORT (URL goes live after the embargo ends):

http://dx.plos.org/10.1371/journal.pone.0037849

Disclaimer: This press release refers to upcoming articles in PLoS ONE. The releases have been provided by the article authors and/or journal staff. Any opinions expressed in these are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

About PLoS ONE

PLoS ONE is the first journal of primary research from all areas of science to employ a combination of peer review and post-publication rating and commenting, to maximize the impact of every report it publishes. PLoS ONE is published by the Public Library of Science (PLoS), the open-access publisher whose goal is to make the world's scientific and medical literature a public resource.

All works published in PLoS ONE are Open Access. Everything is immediately available--to read, download, redistribute, include in databases and otherwise use--without cost to anyone, anywhere, subject only to the condition that the original authors and source are properly attributed. For more information about PLoS ONE relevant to journalists, bloggers and press officers, including details of our press release process and our embargo policy, see the everyONE blog at http://everyone.plos.org/media.

PLOS

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.