Genome sequences show how lemurs fight infection

May 30, 2014

DURHAM, N.C. -- The young lemur named Eugenius started to get sick. Very sick. He was lethargic, losing weight and suffering from diarrhea. Duke Lemur Center veterinarians soon pinpointed the cause of his illness: Eugenius tested positive for Cryptosporidium, a microscopic intestinal parasite known to affect people, pets, livestock and wildlife worldwide.

In humans, thousands of cases of Cryptosporidium are reported in the United States each year, spread primarily through contaminated water.

Since Eugenius was the first animal diagnosed in 1999, the parasite has caused periodic diarrhea outbreaks at the Duke Lemur Center. All of the infected animals are sifakas -- the only lemur species out of 17 at the center known to fall prey to the parasite -- and most of them were under age five when they got sick.

Despite various efforts to stop the infection, such as quarantining infected lemurs and decontaminating their enclosures, more than half of the sifakas living at the center have tested positive for crypto at some point. While most animals recover, the pattern has veterinarians puzzled over why the outbreaks persist.

Now, thanks to advances in next-generation sequencing technology, researchers are getting closer to understanding how these endangered animals fight the infection and detecting the illness early enough to minimize its spread.

In a study published in the May 29, 2014, edition of Molecular Ecology Resources, Duke researchers Peter Larsen, Ryan Campbell and Anne Yoder used high-throughput sequencing on sifaka blood samples to generate sequence data for more than 150,000 different sifaka antibodies -- protective molecules that latch on to bacteria, viruses and other foreign invaders in the body and fight them off before they cause infection.

Traditional sequencing methods can capture only a fraction of the millions of antibodies circulating in the bloodstream at a given time. But faster next-generation sequencing technology lets researchers sequence a much larger portion of the antibody arsenal. The end result is a high-resolution 'snapshot' of antibody diversity that could shed light on how the immune system responds to stress and infection.

The research is part of a growing field called ecoimmunology, which aims to push the study of immunology beyond lab animals like fruit flies and mice and understand how immune systems function in real-world settings outside the lab.

The next step will be to compare blood samples from healthy and sick lemurs, to see if researchers can identify the specific antibodies that play a role in binding to Cryptosporidium and neutralizing the infection -- information that could be key to developing vaccines.

This research will likely lead to new methods of disease detection and treatment for lemurs in captivity, especially infected animals that show no outward signs of being sick. But it also may lead to monitoring the health status of lemurs and other primates living in the wild simply by screening blood samples for antibody patterns indicating exposure to specific parasites.

That's good news for lemurs in their native home of Madagascar, where lemurs live on the brink of extinction, and where human population growth makes contact with people and inter-species exchange of infectious disease increasingly likely.
-end-
CITATION: "Next-generation approaches to advancing eco-immunogenomic research in critically endangered primates," Larsen, P., et al. Molecular Ecology Resources, 2014. http://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12274/abstract

Duke University

Related Fruit Flies Articles from Brightsurf:

Sestrin makes fruit flies live longer
Researchers identify positive effector behind reduced food intake.

Circular RNA makes fruit flies live longer
The molecule influences the insulin signalling pathway and thus prolongs life

Fruit flies respond to rapid changes in the visual environment
Researchers have discovered a mechanism employed by the fruit fly Drosophila melanogaster that broadens our understanding of visual perception.

How fruit flies flock together in orderly clusters
Opposing desires to congregate and maintain some personal space drive fruit flies to form orderly clusters, according to a study published today in eLife.

Fruit flies help in the development of personalized medicine
It is common knowledge that there is a connection between our genes and the risk of developing certain diseases.

Fruit flies' microbiomes shape their evolution
In just five generations, an altered microbiome can lead to genome-wide evolution in fruit flies, according to new research led researchers at the University of Pennsylvania.

Why fruit flies eat practically anything
Kyoto University researchers uncover why some organisms can eat anything -- 'generalists -- and others have strict diets -- 'specialists'.

Why so fly: MU scientists discover some fruit flies learn better than others
Fruit flies could one day provide new avenues to discover additional genes that contribute to a person's ability to learn and remember.

Fruit flies find their way by setting navigational goals
Navigating fruit flies do not have the luxury of GPS, but they do have a kind of neural compass.

Tolerance to stress is a 'trade-off' as fruit flies age
With the help of the common fruit fly (D. melanogaster), which ages quickly because it only lives about 60 days, FAU neuroscientists provide insights into healthy aging by investigating the effects of a foraging gene on age and stress tolerance.

Read More: Fruit Flies News and Fruit Flies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.