Atomic structure of essential circadian clock protein complex determined

May 30, 2014

Structural biologists have made important progress towards better understanding the functioning of the circadian clock. The circadian or inner clock coordinates the sleep-wake rhythm and many other body processes that regulate, for example, metabolism, blood pressure, and the immune system. A research team led by Professor Eva Wolf, recently appointed Professor of Structural Biology at the Institute of General Botany of Johannes Gutenberg University Mainz (JGU) and Adjunct Director at the Institute of Molecular Biology (IMB), has for the first time identified the molecular structure of a protein complex that plays an important role in regulating the circadian rhythm. At the same time, they also made a surprising discovery: The protein complex contains a zinc ion, which apparently stabilizes it. These results could form the basis for new strategies for treating illnesses that are the result of circadian clock dysfunction.

"Our circadian clock controls many important physiological functions," explained Professor Eva Wolf. If the natural rhythm is disrupted, as for example in the case of people on shift work, the likelihood of developing metabolic disorders, diabetes, or cancer is significantly increased. The fundamental research conducted in the Wolf group is focused on obtaining insight into the molecular mechanisms of the circadian clock. Among the currently investigated topics are the cryptochromes, a class of proteins associated with the circadian clock in mammals. In addition to regulating circadian rhythm, these also control glucose homeostasis and blood sugar levels. Together with another clock protein called period they form a complex, the structure of which has just been determined by Wolf's team.

By x-ray analysis of the cryptochrome-period complex structure, the researchers were able to observe atomic details of the interaction between the cryptochrome and period proteins and also discovered that the zinc ion mediates this interaction. "The metal ion stabilizes the complex and also appears to influence an adjacent disulfide bond," clarified Wolf. Cell biological studies conducted in the collaborating group of Prof. Dr. Achim Kramer at the Charite Berlin showed that this also is the case in human cells.

The researchers had not expected to detect a disulfide bond in the presence of the redox state that prevails in the cytoplasm and the cell nucleus. Its existence is probably regulated by the zinc ion and the disulfide bond itself is perhaps a sensor that indicates the metabolic status of the cell.

"We assume that the formation of this cryptochrome-period protein complex provides a mechanism by which the circadian clock interacts with the metabolism, while the zinc ion and the disulfide bond play an important role in regulating the stability of the complex," summarized Wolf. The now Mainz-based biologist hopes that further findings about the basic functioning of the cryptochrome-period complex and her aim of determining the interaction patterns of further clock proteins may help in the development of future medical treatments.
-end-
About the Institute for Molecular Biology gGmbH

The Institute of Molecular Biology gGmbH (IMB) is a center of excellence in the life sciences that was established in 2011. Research at IMB concentrates on three cutting-edge areas: epigenetics, developmental biology, and DNA repair. The institute is a prime example of a successful collaboration between public authorities and a private foundation. The Boehringer Ingelheim Foundation has dedicated EUR 100 million for a period of 10 years to cover the operating costs for research at IMB, while the state of Rhineland-Palatinate provided approximately EUR 50 million for the construction of a state-of-the-art building. For more information about IMB, please visit http://www.imb.de

About the Boehringer Ingelheim Foundation

The Boehringer Ingelheim Foundation is an independent, non-profit organization committed to the promotion of the medical, biological, chemical, and pharmaceutical sciences. It was established in 1977 by Hubertus Liebrecht (1931-1991), a member of the shareholder family of the company Boehringer Ingelheim. Through its PLUS 3 Perspectives Program and Exploration Grants, the foundation supports independent group leaders; it also endows the internationally renowned Heinrich Wieland Prize as well as awards for up-and-coming scientists. The foundation has granted EUR 100 million over a period of ten years to finance the scientific activities of the Institute of Molecular Biology (IMB). For more information about the foundation and its programs, please visit http://www.boehringer-ingelheim-stiftung.de

Johannes Gutenberg Universitaet Mainz

Related Circadian Clock Articles from Brightsurf:

Pinpointing the cells that keep the body's master circadian clock ticking
UT Southwestern scientists have developed a genetically engineered mouse and imaging system that lets them visualize fluctuations in the circadian clocks of cell types in mice.

The discovery of new compounds for acting on the circadian clock
The research team comprised of Designated Associate Professor Tsuyoshi Hirota and Postdoctoral Fellows Simon Miller and Yoshiki Aikawa, of the Nagoya University Institute of Transformative Bio-Molecules, has succeeded in the discovery of novel compounds to lengthen the period of the circadian clock, and has shed light on their mechanisms of action.

Let there be 'circadian' light
Researchers publishing in Current Biology describe the science behind creating lighting to make us all happy and productive indoors.

U of M research discovers link between stress and circadian clock health
New research from the University of Minnesota Medical School found a little stress can make the circadian clock run better and faster.

The role of GABA neurons in the central circadian clock has been discovered
Temporal order of physiology and behavior is regulated by the central circadian clock located in the SCN.

Researchers take aim at circadian clock in deadly brain cancer
Scientists at USC and UC San Diego have discovered a potential novel target for treating glioblastoma, the deadly brain cancer that took the life of Sen.

Circadian clock and fat metabolism linked through newly discovered mechanism
Princeton University researchers found that the enzyme Nocturnin, known for its role in fat metabolism and circadian rhythm, acts on two well-established molecules in metabolism.

Dead zones in circadian clocks
Circadian clocks of organisms respond to light signals during night but do not respond in daytime.

Circadian clock plays unexpected role in neurodegenerative diseases
Northwestern University researchers induced jet lag in a fruit fly model of Huntington disease and found that jet lag protected the flies' neurons.

Researchers locate circadian clock that controls daily rhythms of aggression
Synchronized by light and darkness, the circadian clock exerts control over wake/sleep cycles, body temperature, digestion, hormonal cycles and some behavior patterns.

Read More: Circadian Clock News and Circadian Clock Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.