Rush a light wave and you'll break its data, say NIST scientists

May 30, 2014

Quantum information can't break the cosmic speed limit, according to researchers* from the National Institute of Standards and Technology (NIST) and the University of Maryland's Joint Quantum Institute. The scientists have shown how attempts to "push" part of a light beam past the speed of light results in the loss of the quantum data the light carries. The results could clarify how noise might limit the transfer of information in quantum computers.

The speed of light in vacuum is often thought to be the ultimate speed limit, something Einstein showed to be an unbreakable law. But two years ago,** members of the research team found a sort of "loophole" in the law when they devised a new way to push part of the leading edge of a pulse of light a few nanoseconds faster than it would travel normally. While the 'pulse front' (the initial part of the pulse) still traveled at the usual constant speed, the rising edge and the pulse peak could be nudged forward a bit. Since waves carry information, the team decided to explore what their previous results might mean for quantum information.

"How does the beam's quantum information behave if you try to speed up the leading edge?" says NIST's Ryan Glasser. "We knew if you could speed the information up successfully, it would give rise to all kinds of causality problems, as you see in science fiction movies about people traveling back in time. So while no one expects it to be possible, just what prevents it from happening? That's what we wanted to know."

The team set up a new experiment that "entangled" the photons in two different light beams, which means that quantum information in one beam--such as amplitude--is strongly correlated to information in the other. Ordinarily, measuring these parameters in one beam can reveal those in the second. But when the team nudged the waves in one beam forward and took their measurements, they found the correspondence with the second beam started to taper off, and the more they pushed, the more degraded with noise the signal became.

"We sped up the peak of the correlation between the two beams," Glasser says, "but we couldn't push the quantum information any faster than the speed of light in vacuum."

While further work is needed to determine what is fundamentally enforcing this information speed limit, the current findings could be useful for understanding information transfer within quantum systems such as those that will be needed within quantum computers. "We speculate that quantum noise and distortion set that limit," Glasser says.
A more detailed explanation of the study is available at

* J.B. Clark, R.T. Glasser, Q. Glorieux, U. Vogl, T. Li, K.M. Jones and P.D. Lett. Quantum mutual information of an entangled state propagating through a fast-light medium. Nature Photonics. Published online May 25, 2014. DOI: 10.1038/nphoton.2014.112,

** See the May 2012 Tech Beat story, "First Light: NIST Researchers Develop New Way to Generate Superluminal Pulses" at

National Institute of Standards and Technology (NIST)

Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers
Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to