Nav: Home

Amazon rainforest may be more resilient to deforestation than previously thought

May 30, 2017

The Amazon forest stores about half of the global tropical forest carbon and accounts for about a quarter of carbon absorption from the atmosphere by global forests each year. As a result, large losses of Amazonian forest cover could make global climate change worse.

In the past, researchers have found that a large part of the Amazon forest is susceptible to a tipping point. The tell-tale sign is satellite data showing areas of savannah and rainforest coexisting under the same environmental conditions. Theories from nonlinear dynamics would then suggest that both states are alternative stable outcomes. This so-called bistability means that shocks such as forest clearance or drought could lead to a dramatic increase of fire occurrence and tip an area of rainforest into savannah. Areas that have experienced this transition would then remain locked into this savannah state until large enough increases of rainfall and release of human pressures allow forests to regrow faster than they are lost by intermittent fires.

Bert Wuyts, a fourth year PhD student in the Bristol Centre for Complexity Sciences and lead author on the paper, said: "I decided to take a fresh look at the data and a very different picture emerged when I controlled for seasonality and took out all the data points from satellite images that represented locations that had been subjected to human influence. Suddenly the property of bistability disappeared almost completely."

Bert, who made this discovery in the first year of his PhD, thought it seemed most puzzling, so he teamed up with Professor Alan Champneys, a theorist in the Department of Engineering Mathematics, and Dr Jo House, an expert on land use change from the School of Geographical Sciences. For the past two years they have been examining these findings rigorously.

Alan Champneys, Professor of Applied Non-linear Mathematics, added: "When I first agreed to co-supervise Bert's PhD, I was worried that I had no expertise in the mathematics required to study the observed effects in the satellite data. Fortunately Bert is a superbly independent student and Jo was on hand as a field expert.

"Little did I realise though that the key to understanding Bert's observations was the same pattern formation theory I have used extensively before. To me this shows the power of interdisciplinary collaboration and also the ubiquity of mathematics and data science in explaining seemingly unrelated phenomena."

Previous research appears to have failed to take into account spatial interaction and edge effects between neighbouring zones, typically through naturally occurring forest fires. Taking such terms into account leads to reaction-diffusion theory, used widely in predicting the formation of spatial patterns within physics and chemistry. According to the theory, there should be a distinct boundary between forest and savannah predictable from climate and soils.

The key was to recognise that proximity to human cultivations acts as a third determining factor. Forests closer to human cultivations are subject to logging and erosion by fires originating from the open cultivated areas. This causes a shift of the forest-savanna boundary towards wetter areas.

The good news is that as long as there is some forest left, deforestation will not lock currently forested areas into a savannah state. This means that recovery of the forest in deforested areas should happen as soon as these areas are released from human pressures. Nevertheless, there exists a second mechanism that could lead to bistability of Amazonian forest cover, which was not taken into account in this research.

Previous research has shown via simulations that the Amazon forest can have a positive effect on regional rainfall. Through this mechanism, forest loss may lead to decreased rainfall causing further forest loss. Whether climate change or deforestation may still permanently transform the Amazon forest into a savannah depends on the importance of this second mechanism and is subject of further research.
-end-
Paper:

'Amazonian forest-savanna bistability and human impact' by Bert Wuyts, Alan R. Champneys and Joanna I. House in Nature Communications [open access]

University of Bristol

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"