Nav: Home

Understanding T cell activation could lead to new vaccines

May 30, 2017

Scientists could be one step closer to developing vaccines against viruses such as Zika, West Nile or HIV, according to Penn State College of Medicine researchers.

Most current vaccines work by stimulating a class of white blood cells called B cells to make antibodies that circulate and control infections in the blood. For decades, scientists have been seeking a new type of vaccine that activates another player in the immune system called a T cell to fight off infections within different organs.

A small number of a type of T cell, called memory T cells, are generated following an infection or immunization. Some memory T cells patrol the body looking for repeat infection, while others migrate into organs and remain there; these are called tissue-resident memory cells. These cells can be found where viruses and bacteria can get into the body, such as the skin, the gut and the female reproductive tract, as well as organs that are highly prone to injury, such as the brain.

In a study a team of researchers, led by Aron E. Lukacher, chair and professor of microbiology and immunology, and Saumya Maru, a medical and doctoral student, has uncovered more details about what it takes to generate a good tissue-resident memory T-cell response against repeat infections. They report their results in PLOS Pathogens.

Working with mouse polyomavirus, the researchers developed a library of genetically altered viruses that stimulated T cell receptors at different strength levels in mice. Virus variants with weaker stimulation gave rise to tissue-resident memory T cells in the mouse brain that were better able to fight off a second infection there.

"Adjusting the strength of T cell receptor stimulation -- in effect making it weaker -- promoted the generation of these resident memory T cells in the brain," Lukacher said. "The weaker the stimulation, the better the memory."

Now that importance of tissue-resident memory T cells in thwarting infections in organs has been identified, vaccine researchers have become interested in learning about factors that promote the number and function of these cells.

If successful, people in the future who are inoculated with vaccines that induce a strong tissue-resident memory T cell response will be "protected from the infection much more efficiently," Lukacher said. "Very certainly having more and better functioning memory T cells will clear out the infection much more rapidly."
-end-
Other researchers on this project were Todd D. Schell, professor of microbiology and immunology, and Ge Jin, research technologist, both at Penn State College of Medicine.

The National Institute of Allergy and Infectious Diseases, the National Institute of Neurological Disorders and Stroke, and the National Institute of Neurological Disorders and Stroke grant funded this research.

Penn State

Related Memory Articles:

Taking photos of experiences boosts visual memory, impairs auditory memory
A quick glance at any social media platform will tell you that people love taking photos of their experiences -- whether they're lying on the beach, touring a museum, or just waiting in line at the grocery store.
Think you know how to improve your memory? Think again
Research from Katherine Duncan at the University of Toronto suggests we may have to rethink how we improve memory.
Improving memory with magnets
The ability to remember sounds, and manipulate them in our minds, is incredibly important to our daily lives -- without it we would not be able to understand a sentence, or do simple arithmetic.
Who has the better memory -- men or women?
In the battle of the sexes, women have long claimed that they can remember things better and longer than men can.
New study of the memory through optogenetics
A collaboration between Universitat Autònoma de Barcelona and Harvard University pioneers the increase of memory using optogenetics in mice in Spain.
Peppermint tea can help improve your memory
Peppermint tea can improve long-term and working memory and in healthy adults.
A new glimpse into working memory
MIT study finds bursts of neural activity as the brain holds information in mind, overturns a long-held model.
Memory ensembles
For over forty years, neuro-scientists have been interested in the biological mechanisms underlying the storage of the information that our brain records every day.
What is your memory style?
Why is it that some people have richly detailed recollection of past experiences (episodic memory), while others tend to remember just the facts without details (semantic memory)?
Watching a memory form
Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered a novel mechanism for memory formation.

Related Memory Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...