Nav: Home

A glove powered by soft robotics to interact with virtual reality environments

May 30, 2017

Engineers at UC San Diego are using soft robotics technology to make light, flexible gloves that allow users to feel tactile feedback when they interact with virtual reality environments. The researchers used the gloves to realistically simulate the tactile feeling of playing a virtual piano keyboard.

Engineers recently presented their research, which is still at the prototype stage, at the Electronic Imaging, Engineering Reality for Virtual Reality conference in Burlingame, Calif.

Currently, VR user interfaces consist of remote-like devices that vibrate when a user touches a virtual surface or object. "They're not realistic," said Jurgen Schulze, a researcher at the Qualcomm Institute at UC San Diego and one of the paper's senior authors.

"You can't touch anything, or feel resistance when you're pushing a button. By contrast, we are trying to make the user feel like they're in the actual environment from a tactile point of view."

Other research teams and industry have worked on gloves as VR interfaces. But these are bulky and made from heavy materials, such as metal. The glove the engineers developed has a soft exoskeleton equipped with soft robotic muscles that make it much lighter and easier to use.

"This is a first prototype but it is surprisingly effective," said Michael Tolley, a mechanical engineering professor at the Jacobs School of Engineering at UC San Diego and also a senior author.

The system involves three main components: a Leap Motion sensor that detects the position and movement of the user's hands; a custom fluidic control board that controls the gloves' movements; and soft robotic components in the glove that individually inflate or deflate to mimic the forces that the user would encounter in the VR environment. The system interacts with a computer that displays a virtual piano keyboard with a river and trees in the background.

One key element in the gloves' design is a type of soft robotic component called a McKibben muscle, essentially latex chambers covered with braided fibers. The muscles respond like springs to apply force when the user moves their fingers. The board controls the muscles by inflating and deflating them.

Researchers 3D-printed a mold to make the gloves' soft exoskeleton. This will make the devices easier to manufacture and suitable for mass production, they said. Researchers used silicone rubber for the exoskeleton, with Velcro straps embedded at the joints.

Engineers conducted an informal pilot study of 15 users, including two VR interface experts. All tried the demo which allowed them to play the piano in VR. They all agreed that the gloves increased the immersive experience. They described it as "mesmerizing" and "amazing."

The engineers are working on making the glove cheaper, less bulky and more portable. They also would like to bypass the Leap Motion device altogether to make system more compact.

"Our final goal is to create a device that provides a richer experience in VR," Tolley said. "But you could imagine it being used for surgery and video games, among other applications."

Watch a video of the glove in action here: https://youtu.be/gCka1qsD4q8
-end-


University of California - San Diego

Related Engineering Articles:

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.
COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.
Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.