Nav: Home

Mosquitoes infected with virus-suppressing bacteria could help control dengue fever

May 30, 2017

Mosquitos infected with the bacteria Wolbachia are significantly worse vectors for dengue virus, but how to establish and spread Wolbachia in an urban mosquito population is unclear. A study publishing on 30th May 2017 in the open access journal PLOS Biology by Michael Turelli from University of California, Davis, and colleagues from Scott O'Neill's "Eliminate Dengue Program" demonstrates that over time, strategic releases may be enough for mosquitoes infected with the dengue-suppressing bacteria to spread across large cities.

More than 2.5 billion people live in areas afflicted by dengue fever, a mosquito-borne viral disease that is increasing at alarming rates in tropical and subtropical countries. Suppression efforts have mainly focused on mosquito control, but an international, non-profit research collaboration, the Eliminate Dengue Program, is trailing a new approach: harnessing bacteria that infect mosquitoes and reduce their capacity to transmit viruses. The researchers released adult Aedes aegypti mosquitoes infected with Wolbachia bacteria in three areas adjacent to suitable mosquito habitat in Cairns, Queensland. Two of the sites were relatively large (about 1 square kilometer and half a square kilometer, respectively), while the third was smaller (about a tenth of a square kilometer), and received more than 130,000; 286,000; and 35,000 Wolbachia-infected mosquitoes, respectively. The researchers tracked the spread of Wolbachia through mosquito populations over two years by trapping and testing them for the bacteria.

Turelli and colleagues found that Wolbachia-infected mosquitoes spread at about 100-200 meters per year in the larger sites, but there was little evidence of such spread in the smaller area even after two years. This suggests that as long as the introduction sites are large enough strategic releases can transform mosquito populations in cities. While slow, the spread in the larger sites was generally steady. However, the researchers also found that spread could be impeded by barriers to mosquito movement, which could include roads, rivers and forests. This suggests that local barriers to mosquito dispersal should be taken into account when determining how many releases of Wolbachia-infected mosquitoes are required.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: https://doi.org/10.1371/journal.pbio.2001894

Citation: Schmidt TL, Barton NH, Rasic G, Turley AP, Montgomery BL, Iturbe-Ormaetxe I, et al. (2017) Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol 15(5): e2001894. https://doi.org/10.1371/journal.pbio.2001894

Funding: FNIH as part of the Grand Challenges program of the Bill and Melinda Gates Foundation (grant number). FNIH funding to SLO. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. National Health and Medical Research Council (grant number 1044698). NHMRC to SAR. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. National Health and Medical Research Council (grant number). NHMRC program and fellowship funding to AAH. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NIH (grant number R01 GM104325). NIH funding to MT and AAH. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...