Nav: Home

Paradoxically, environmental noise helps preserve the coherence of a quantum system

May 30, 2018

Quantum computers promise to lead to major advances in certain areas of complex computing. One of the roadblocks to achieving such dream computers, however, is the fact that quantum phenomena, which take place at the level of atomic particles, can be severely affected by environmental "noise" from their surroundings. In the past, scientists have tried to maintain the coherence of the systems by cooling them to very low temperatures, for example, but challenges remain. Now, in research published in Nature Communications, scientists from the RIKEN Center for Emergent Matter Science and collaborators have shown, with a three-particle system, that they can use dephasing--a process that normally would reduce the coherence--to paradoxically maintain it.

Quantum phenomena are generally restricted to the atomic level, but there are cases--such as laser light and superconductivity--where the coherence of quantum phenomena allows them to be expressed at the macroscopic level. This is important for the development of quantum computers. However, they are also extremely sensitive to the environment, which destroys the very coherence that makes them meaningful.

The group, led by Seigo Tarucha of the RIKEN Center for Emergent Matter Science, set up a system of three quantum dots in which electron spins could be individually controlled with an electric field. They began with two entangled electron spins in one of the end quantum dots, while keeping the center dot empty, and transferred one of these spins to the center dot. They then swapped the center dot spin with a third spin in the other end dot using electric pulses, so that the third spin was now entangled with the first, which was not in contact with it. What was surprising, however, was that the entanglement was stronger than expected, and based on simulations, they realized that the environmental noise around the system was, paradoxically, helping the entanglement to form.

According to Takashi Nakajima, the first author of the study, "We discovered that this derives from a phenomenon known as the 'quantum Zeno paradox' or 'Turing paradox,' which means that one can slow down a quantum system by the mere act of observing it frequently. This is interesting as it leads to the environmental noise, which normally makes a system incoherent, actually making it more coherent."

According to Tarucha, the leader of the team, "This is a very exciting finding, as it could potentially help to accelerate research into scaling up semiconductor quantum computers, allowing us to solve scientific problems that are very tough on conventional computer systems."

Nakajima continues, "Another area that is very interesting to me is that a number of biological systems, such as photosynthesis, that operate within a very noisy environment take advantage of macroscopic quantum coherence, and it is interesting to ponder if a similar process may be taking place."


Related Quantum Dots Articles:

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible
ICFO develops the first graphene-based camera, capable of imaging visible and infrared light at the same time.
Platelets instead of quantum dots
A team of researchers led by ETH Zurich professor David Norris has developed a model to clarify the general mechanism of nanoplatelet formation.
Quantum dots illuminate transport within the cell
Biophysicists from Utrecht University have developed a strategy for using light-emitting nanocrystals as a marker in living cells.
'Flying saucer' quantum dots hold secret to brighter, better lasers
By carefully controlling the size of the quantum dots, the researchers can 'tune' the frequency, or color, of the emitted light to any desired value.
'Flying saucer' colloidal quantum dots produce brighter, better lasers
A multi-institutional team of researchers from Canada and the US has demonstrated steady state lasing with solution-processed nanoparticles called 'colloidal quantum dots,' an important step on the path to improving laser tools for fiber optics, video projectors and more accurate medical testing technology.
Quantum dots with impermeable shell: A powerful tool for nanoengineering
Depending on their applications, quantum dots need to be tailored in terms of their structure and properties.
USC quantum computing researchers reduce quantum information processing errors
USC Viterbi School of Engineering scientists found a new method to reduce the heating errors that have hindered quantum computing.
A new form of hybrid photodetectors with quantum dots and graphene
ICFO researchers develop a hybrid photodetector comprising an active colloidal quantum dot photodiode integrated with a graphene phototransistor.
ORNL demonstrates large-scale technique to produce quantum dots
ORNL demonstrates a method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications.
First single-enzyme method to produce quantum dots revealed
Three Lehigh University engineers have successfully demonstrated the first precisely controlled, biological way to manufacture quantum dots using a single-enzyme, paving the way for a significantly quicker, cheaper and greener production method.

Related Quantum Dots Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...