Building nanomaterials for next-generation computing

May 30, 2018

WASHINGTON, D.C., May 30, 2018 -- Nanoscientists at Northwestern University have developed a blueprint to fabricate new heterostructures from different types of 2-D materials. 2-D materials are single atom layers that can be stacked together like "nano-interlocking building blocks." Materials scientists and physicists are excited about the properties of 2-D materials and their potential applications. The researchers describe their blueprint in the Journal of Applied Physics, from AIP Publishing.

"We've outlined an easy, deterministic and readily deployable way to stack and stitch these individual layers into orders not seen in nature," said Jeffrey Cain, an author on the paper who was formerly at Northwestern University but is now at Lawrence Berkeley National Laboratory and the University of California.

Cain explained that for nanoscientists, "the dream" is to combine 2-D materials in any order and collate a library of these heterostructures with their documented properties. Scientists can then select appropriate heterostructures from the library for their desired applications. For instance, the computer industry is trying to make transistors smaller and faster to increase computing power. A nanoscale semiconductor with favorable electronic properties could be used to make transistors in next-generation computers.

So far, nanoscientists have lacked clear methods for fabricating heterostructures, and have not yet been able to develop this library. In this work, the scientists looked to solve these fabrication issues. After identifying trends in the literature, they tested different conditions to map out the different parameters required to grow specific heterostructures from four types of 2-D materials: molybdenum disulfide and diselenide, and tungsten disulfide and diselenide. To fully characterize the atomically thin final products, the scientists used microscopy and spectrometry techniques.

The group was inspired by the science of time-temperature-transformation diagrams in classical materials, which maps out heating and cooling profiles to generate precise metallic microstructures. Based on this method, the researchers packaged their findings into one diagrammatic technique -- the Time-Temperature-Architecture Diagram.

"People had previously written papers for specific morphologies, but we have unified it all and enabled the generation of these morphologies with one technique," Cain said.

The unified Time-Temperature-Architecture Diagrams provide directions for the exact conditions required to generate numerous heterostructure morphologies and compositions. Using these diagrams, the researchers developed a unique library of nanostructures with physical properties of interest to physicists and materials scientists. The Northwestern University scientists are now examining the behaviors displayed by some materials in their library, like the electron flow across the stitched junctions between materials.

The researchers hope that their blueprint design will be useful for heterostructure fabrication beyond the first four materials. "Our specific diagrams would need revisions in the context of each new material, but we think that this idea is applicable and extendable to other material systems," Cain said.
The article, "Controlled synthesis of 2D MX2 (M=Mo, W; X=S, Se) heterostructures and alloys," is written by Jeffrey D. Cain, Eve D. Hanson and Vinayak P. Dravid. The article appeared in the Journal of Applied Physics May 29, 2018, (DOI: 10.1063/1.5025710) and can be accessed at


Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See

American Institute of Physics

Related Applied Physics Articles from Brightsurf:

Development of photovoltaics that can be applied like paint for real-life application
Researchers in Korea have successfully developed a high-efficiency large-area organic solution processable solar cell by controlling the speed at which the solution of raw materials for solar cells became solidified after being coated.

Nanotechnology applied to medicine: The first liquid retina prosthesis
Researchers at Istituto Italiano di Tecnologia has led to the development of an artificial liquid retinal prosthesis to counteract the effects of diseases such as retinitis pigmentosa and age-related macular degeneration that cause the progressive degeneration of photoreceptors of the retina, resulting in blindness.

Consider soil in fall-applied ammonia rates, Illinois study says
Fall-applied anhydrous ammonia may not fulfill as much of corn's nitrogen needs as previously assumed.

Study: Some stereotypes seem to be universally applied to biracial groups in the US
A new Northwestern University study has found evidence that there are some stereotypes that seem to be universally applied to biracial groups in the U.S.

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

New BioIVT research on botanical-drug interactions published in Applied In Vitro Toxicology
This study investigates the potential for clinically-relevant botanical-drug interactions (BDIs) with Boswellia serrata (Indian Frankincense), a botanical that is used as an anti-inflammatory supplement.

Criteria for the reduction of environmental impact applied in the Roman Theatre of Itálica
The authors of the study have developed tools that link Life-Cycle Analysis (LCA) and Building Information Modeling (BIM) software so that environmental-impact reduction criteria can be integrated into projects from the moment of their first design.

Artificial intelligence applied to the genome identifies an unknown human ancestor
By combining deep learning algorithms and statistical methods, investigators from the Institute of Evolutionary Biology (IBE), the Centro Nacional de Análisis Genómico (CNAG-CRG) of the Centre for Genomic Regulation (CRG) and the Genomics Institute at the University of Tartu have identified, in the genome of Asiatic individuals, the footprint of a new hominid who cross bred with its ancestors tens of thousands of years ago.

Ultralaser treatment for fibromyalgia yields 75 percent pain reduction when applied to the hands
Medical device with simultaneous laser and ultrasound application was developed in Brazil.

Can a home-based, self-applied ECG patch improve the diagnosis of atrial fibrillation?
For approximately 20 percent of individuals who experience a stroke due to atrial fibrillation (AF; an irregular and often rapid heart rate), the occurrence of AF was not diagnosed until the time of their stroke or shortly afterward.

Read More: Applied Physics News and Applied Physics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to