Nav: Home

Microscopic universe provides insight into life and death of a neutron

May 30, 2018

A neutron "lives" for almost 15 minutes before it decays. The elementary particles remain stable as long as they are in the atomic nuclei. In isolation, however, they decay after just under 15 minutes into other particles - protons, electrons, and antineutrinos. To determine the lifetime of the neutrons, scientists observe either the emergence of these decay products or the disappearance of the neutrons. However, these two varying experiments deliver different results. The deviation is less than nine seconds. This might not appear to be much, but the conflicts between the experimental measurements could answer key questions about a new physics beyond the known particles and processes in the universe.

For the first time, an international team of scientists used supercomputers to calculate a quantity that is crucial for understanding the lifetime of neutrons: the axial coupling constant of the weak interaction, or gA for short. "It determines the force with which the particles are bound together in the atomic nucleus as well as the radioactive decay rate of the neutron," explains Evan Berkowitz from the Nuclear Physics Institute (IKP). "We were able to calculate the coupling constant with unprecedented precision and our method is paving the way towards further improvements that may explain the experimental discrepancy in the lifetime of neutrons."

Space and time on a lattice

For their calculation, the researchers turned to a key feature of the standard model of particle physics: quantum chromodynamics (QCD). This theory describes how quarks and gluons - the building blocks for nuclear particles such as protons and neutrons - interact with each other. These interactions determine the mass of the nuclear particles, the strength of their coupling, and, therefore, the value of the coupling constants.

However, QCD calculations are extremely complex. For their calculations, the researchers therefore used a numerical simulation known as lattice QCD. "In this simulation, space and time are represented by points on a lattice," explains Berkowitz. "Through this construction, a calculation of the relations between the elementary particles is fundamentally possible - but only with the aid of powerful supercomputers." The scientists used the Titan supercomputer at the Oak Ridge National Laboratory in Tennessee for their simulations.

Microscopic universe

The coupling constant, which previously could only be derived from neutron decay experiments, was thus determined directly from the standard model for the first time. To this end, the researchers created a simulation of a microscopic part of the universe measuring just a few neutrons wide - much smaller than the smallest atom. The model universe contains a single neutron in the middle of a "sea" of gluons and pairs of quarks and their antiparticles, antiquarks. In this microcosm, the scientists simulated the decay of a neutron to predict what happens in nature.

Berkowitz explains that this allows two results for gA from completely independent sources - those from the neutron decay experiments and those using the standard model - to be compared with each other for the first time. "Even the smallest deviations between the values could lead to new discoveries related to dark matter, the asymmetry between matter and antimatter, and other fundamental questions concerning the nature of the universe."

A new era

"Through our simulation, we were also able to show that the lattice QCD approach can be applied to basic research on the physics of atomic nuclei," explains Berkowitz. The methods have so far mainly been used for elementary particle physics, i.e. the physics of quarks and gluons , and of short-lived particles found in collider experiments. "These calculations ring in a new era. We can now determine parameters of nuclear physics with greater precision without having to resort to experimental measurement data or phenomenological models."

Forschungszentrum Juelich

Related Physics Articles:

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
When the physics say 'don't follow your nose'
Engineers at Duke University are developing a smart robotic system for sniffing out pollution hotspots and sources of toxic leaks.
The coming of age of plasma physics
The story of the generation of physicists involved in the development of a sustainable energy source, controlled fusion, using a method called magnetic confinement.
Physics: Not everything is where it seems to be
Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects.
'Fudge factors' in physics?
What if your theory to model and predict the electronic structure of atoms isn't accounting for dispersion energy?
More Physics News and Physics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at