Nav: Home

The most complete study of battery failure sees the light

May 30, 2019

An international team of researchers just published in Advanced Energy Materials the widest study on what happens during battery failure, focusing on the different parts of a battery at the same time. The role of the ESRF, the European Synchrotron, in France, was crucial for its success.

We have all experienced it: you have charged your mobile phone and after a short period using it, the battery goes down unusually quickly. Consumer electronics seem to lose power at uneven rates and this is due to the heterogeneity in batteries. When the phone is charging, the top layer charges first and the bottom layer charges later. The mobile phone may indicate it's complete when the top surface level is finished charging, but the bottom will be undercharged. If you use the bottom layer as your fingerprint, the top layer will be overcharged and will have safety problems.

The truth is, batteries are composed of many different parts that behave differently. Solid polymer helps hold particles together, carbon additives provide electrical connection, and then there are the active battery particles storing and releasing the energy.

An international team of scientists from the ESRF, SLAC, Virginia Tech and Purdue University wanted to understand and quantitatively define what leads to the failure of lithium-ion batteries. Until then, studies had either zoomed in on individual areas or particles in the cathode during failure or zoomed out to look at cell level behavior without offering sufficient microscopic details. Now this study provides the first global view with unprecedented amount of microscopic structural details to complement the existing studies in the battery literature.

If you have a perfect electrode, every single particle should behave in the same fashion. However, electrodes are very heterogeneous and contain millions of particles. There's no way to ensure each particle behaves the same way at the same time.

To overcome this challenge, the research team relied heavily on the synchrotron X-ray methods and used two synchrotron facilities to study electrodes in batteries, the ESRF, the European synchrotron in Grenoble, France and Stanford's SLAC National Accelerator Laboratory, in US. "The ESRF allowed us to study larger quantities of battery particles at higher resolution" says Feng Lin, assistant professor at Virginia Tech. Complementary experiments, in particular nano-resolution X-ray spectro-microscopy, took place at SLAC.

"Hard X-ray phase contrast nano-tomography showed us each particle at remarkable resolution across the full electrode thickness. This allowed us to track the level of damage in each of them after using the battery. Around half of the data from the paper came from the ESRF", explains Yang Yang, scientist at ESRF and first author of the paper.

"Before the experiments we didn't know we could study these many particles at once. Imaging individual active battery particles has been the focus of this field. To make a better battery, you need to maximize the contribution from each individual particle", says Yijin Liu, scientist at SLAC.

Virginia Tech lab manufactured the materials and batteries, which were then tested for their charging and degradation behaviors at the ESRF and SLAC. Kejie Zhao, assistant professor at Purdue University, led the computational modelling effort in this project.

The findings from this publication offer a diagnostic method for the particles utilization and fading in batteries. "This could improve how industry designs electrodes for fast-charging batteries", concludes Yang.
-end-
This work is supported by multiple entities, including the U.S. Department of Energy and the National Science Foundation.

European Synchrotron Radiation Facility

Related Batteries Articles:

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.
Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.
New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).
New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.
Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.
Will the future's super batteries be made of seawater?
The race is on to develop even more efficient and rechargable batteries for the future.
Less may be more in next-gen batteries
Rice University engineers build full lithium-ion batteries with silicon anodes and an alumina layer to protect cathodes from degrading.
Not so fast: Some batteries can be pushed too far
Fast charge and discharge of some lithium-ion batteries with intentional defects degrades their performance and endurance, according to Rice University engineers.
Interfacial chemistry improves rechargeability of Zn batteries
Prof. CUI Guanglei's group from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences has proposed new concepts concerning in situ formed and artificial SEIs as a means of fundamentally modulating the electrochemical characteristics of Zn.
Detours may make batteries better
Adding atom-scale defects to battery materials may help them charge faster, theoretical models by Rice University scientists show.
More Batteries News and Batteries Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.