Nav: Home

Stellenbosch University researchers study resistance to 'protect' anti-TB drug

May 30, 2019

In July last year, South Africa became the first country to roll out a new anti-tuberculosis drug in its national programme.

This new drug, called bedaquiline, is the first new anti-tuberculosis drug to be developed in four decades. It improves the survival of patients with multidrug resistant TB, potentially offering a shorter treatment time with fewer side effects.

Scientists from Stellenbosch University (SU), in collaboration with a multidisciplinary team of researchers and clinicians, are now trying to conserve this life-saving treatment by studying how Mycobacterium tuberculosis, the bacterium that causes TB, can develop resistance to this drug. Their findings will be used to inform tuberculosis treatment guidelines to ensure that the right combination of anti-tuberculosis drugs are used along with bedaquiline in order to optimise patient treatment outcomes, while minimising the risk of developing resistance to the drug.

"We need to protect bedaquiline from the development of resistance and therefore it is crucial to understand how quickly and through which mechanisms bedaquiline resistance develops," says Dr Margaretha de Vos, one of the lead authors of a scientific commentary article recently published in the New England Journal of Medicine. The article is based on research by De Vos and colleagues at the Division of Molecular Biology and Human Genetics at SU's Faculty of Medicine and Health Sciences (FMHS).

SU researchers studied the development of bedaquiline resistance in TB bacteria in a 65-year-old patient from Cape Town using a combination of novel techniques. These included (1) whole-genome sequencing of the bacteria in patient samples taken throughout various stages of the disease, (2) targeted deep sequencing of Rv0678, a gene of the bacteria that is associated with bedaquiline resistance, and (3) culture-based drug susceptibility testing.

The study showed that resistance to bedaquiline emerged despite the patient adhering to the standard treatment regimen, which requires bedaquiline to be taken along with at least five antibiotic drugs which the bacterium does not resist.

"These results show that it is crucial to increase our efforts to monitor patients receiving bedaquiline and to develop new diagnostic tools to rapidly identify bedaquiline resistance. By rapidly identifying bedaquiline resistance, we will be able change treatment and thereby prevent spread," says Rob Warren, distinguished professor in microbiology and co-author of the article.

Helen Cox, one of the senior co-authors of the study, suggests that "while it is important to monitor the emergence of resistance to new drugs such as bedaquiline, these data should not suggest that we restrict access to bedaquiline for the thousands of patients in South Africa who are in dire need of improved treatment for drug-resistant tuberculosis".
-end-
The study was done in collaboration with colleagues at the South African Medical Research Council, the University of Cape Town, Médecins sans Frontières (Doctors without Borders), the National Health Laboratory Services, and with international support from several institutes in the United States and Belgium.

Stellenbosch University

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.