COMMD3/8 protein complex: a potential drug target for treating inflammatory diseases

May 30, 2019

A team of researchers led by Kazuhiro Suzuki from the Immunology Frontier Research Center at Osaka University discovered the COMMD3/8 complex as a molecule involved in immune cell migration, clarifying that the complex plays a critical role in the establishment of immune responses. Their research results were published in The Journal of Experimental Medicine.

Immune cells are constantly moving around in our body. Immune cell migration, which is critically important for efficient immune responses when immune cells detect intrusion of pathogens, is also deeply involved in the development of inflammatory diseases such as autoimmune diseases. The factors in the induction of immune cell migration are chemokines and chemokine receptors. Chemokine receptors, a type of G protein-coupled receptor (GPCR), mediate signal transduction and are involved in various pathologies and conditions. A large fraction of existing drugs target various GPCRs.

While exploring the mechanism of regulating immune cell migration, this team identified a protein complex consisting of copper metabolism MURR1 domain-containing 3 (COMMD3) and COMMD8, or the COMMD3/8 complex, as an adaptor that selectively recruits a specific GPCR kinase (GRK) to chemoattractant receptors.

They found that COMMD3/8 promoted signal transduction of chemokine receptors to facilitate migration of immune cells, including lymphocytes. (Figure 1)

In experiments using COMMD3/8-deficient mice, impaired migration of activated B cells, also known as B lymphocytes, significantly reduced immune responses, causing severe defects in antibody response. In addition, they found that loss of the COMMD3/8 complex reduced lymphocyte migration induced by stimulation of chemokine receptors. They also found that the COMMD3/8 complex functioned as an adaptor that selectively recruits GRK6, a signal transduction molecule, to chemoattractant receptors, inducing activation of signaling of chemokine receptors. (Figure 2)

From these findings, they clarified that the COMMD3/8 complex played an essential role in lymphocyte migration and proper functioning of the immune system. In addition, they revealed that COMMD3 and COMMD8 were degraded by the proteasome in the absence of the other, and deficiency of either protein produced the same phenotypes, which indicates that both COMMD3 and COMMD8 are required for the stability and function of their complex.

The results of their study suggest that inhibiting the function of the COMMD3/8 complex will improve conditions of autoimmune disorders and inflammatory diseases caused by overwhelming immune response. The COMMD3/8 complex will become a drug target for curing these diseases.

"Although it took a long time for us to clarify how the COMMD3/8 complex activated signal transduction of chemokine receptors, our achievement is remarkable in that a signal regulation mechanism common in chemokine receptors and many GPCRs has been clarified," says lead author Akiko Nakai.
-end-
About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Immune Cells Articles from Brightsurf:

Gut immune cells may help send MS into remission
An international research team led by UCSF scientists has shown, for the first time, that gut immune cells travel to the brain during multiple sclerosis (MS) flare-ups in patients.

Immune cells sculpt circuits in the brain
Brain immune cells, called microglia, protect the brain from infection and inflammation.

How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.

Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.

Read More: Immune Cells News and Immune Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.