Swapping water for CO2 could make fracking greener and more effective

May 30, 2019

Scientists at the Chinese Academy of Sciences and China University of Petroleum (Beijing) have demonstrated that CO2 may make a better hydraulic fracturing (fracking) fluid than water. Their research, published May 30 in the journal Joule, could help pave the way for a more eco-friendly form of fracking that would double as a mechanism for storing captured atmospheric CO2.

Fracking is a technique used to extract resources from unconventional reservoirs in which fluid (usually water mixed with sand, foaming agents, biocides, and other chemicals) is injected into the rock, fracturing it to release the resources within. Of the approximately 7-15 million liters of fluid injected, 30%-50% remains in the rock formation after extraction ends. Its high water consumption, environmental risks, and frequent production issues have led to concerns about fracking among both industry experts and environmental advocates.

"Non-aqueous fracturing could be a potential solution to circumvent these issues," says Nannan Sun, a researcher in the Shanghai Advanced Research Institute at the Chinese Academy of Sciences. "We chose CO2 fracturing from a range of options because the process includes multiple benefits. However, we were still lacking a fundamental understanding of the technology, which is greatly important for its further development and deployment."

Benefits of CO2 fracturing include eliminating the need for a hefty water supply (which would make fracking viable in arid locations), reducing the risk of damage to reservoirs (as often happens when aqueous solutions create blockages in the rock formation), and providing an underground repository for captured CO2.

However, CO2 is not likely to become commonly used as a fracking fluid unless it is more effective than water at resource production. To investigate the differences between CO2 and water as fracturing fluids on a microscopic level, Sun and his team collected shale outcrops from Chongqing, China and fractured them with both fluids. They found that CO2 outperformed water, creating complex networks of fractures with significantly higher stimulated volumes.

"We demonstrated that CO2 has higher mobility than water, and, therefore, the injection pressure can be better delivered into the natural porosity of the formation," says Sun. "This changes the mechanism by which the fractures are created, generating more complex fracture networks that result in more efficient shale gas production."

While the researchers believe this hydraulic fracturing technology will be scalable, its large-scale development is currently limited by CO2 availability. The cost of CO2 captured from emission sources is still prohibitively expensive to make CO2 an industry-wide fracking fluid replacement.

The team also notes that once CO2 has been injected into the fracture, it acquires a low viscosity that inhibits it from effectively transporting sand to the fractures. Since the sand is intended to prop open the fractures while shale gas is harvested, it is critical that scientists learn to improve the fluid's viscosity--but the team is not yet sure how to do so while keeping costs low and minimizing the environmental footprint.

As next steps, the researchers plan to study the limits of CO2 fracturing technology in order to better understand how it can be used. "Further investigations are needed to identify the effects of type of reservoirs, geomechanical properties and conditions, CO2 sensitivity of the formation, and so forth," says Sun. "Additionally, cooperation with industries will be carried out to push forward the practical deployment of the technology."
-end-
This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, CAS Key Lab for Low Carbon Conversion Science and Engineering, and National Natural Science Foundation of China.

Joule, Song, Guo, and Zhang et al.: "Fracturing with Carbon Dioxide: From Microscopic Mechanism to Reservoir Application" https://www.cell.com/joule/fulltext/S2542-4351(19)30216-8

Joule (@Joule_CP), published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Hydraulic Fracturing Articles from Brightsurf:

What factors influence the likelihood of fracking-related seismicity in Oklahoma?
The depth of a hydraulic fracturing well in Oklahoma, among other factors, increases the probability that fracking will lead to earthquake activity, according to a new report in the Bulletin of the Seismological Society of America.

Skoltech scientists use ML to optimize hydraulic fracturing design for oil wells
Skoltech researchers and their industry colleagues have created a data-driven model that can forecast the production from an oil well stimulated by multistage fracturing technology.

Fracking chemical may interfere with male sex hormone receptor
A chemical used in hydraulic fracturing, commonly called fracking, has the potential to interfere with reproductive hormones in men, according to research accepted for presentation at ENDO 2020, the Endocrine Society's annual meeting, and publication in a special supplemental section of the Journal of the Endocrine Society.

Paper: Disposal of wastewater from hydraulic fracturing poses dangers to drivers
A new paper co-written by Yilan Xu, a professor of agricultural and consumer economics at the University of Illinois at Urbana-Champaign, shows that the growing traffic burden in shale energy boomtowns from trucks hauling wastewater to disposal sites resulted in a surge of road fatalities and severe accidents.

Water reuse could be key for future of hydraulic fracturing
Enough water will come from the ground as a byproduct of oil production from unconventional reservoirs during the coming decades to theoretically counter the need to use fresh water for hydraulic fracturing operations in many of the nation's large oil-producing areas.

UTA study examines potential sources of groundwater contamination in private wells
A study led by environmental researchers at The University of Texas at Arlington suggests a disconnect between the perception of groundwater contamination and the extent to which that contamination is attributable to oil and natural gas extraction.

Swapping water for CO2 could make fracking greener and more effective
Scientists at the Chinese Academy of Sciences and China University of Petroleum (Beijing) have demonstrated that CO2 may make a better hydraulic fracturing (fracking) fluid than water.

Federal research significant in environmental rule-making
Federally-sponsored science plays a more significant role in bringing together stakeholders and facilitating environmental governance debates than all other types of research, according to an international team of researchers.

Studies link earthquakes to fracking in the central and eastern US
Small earthquakes in Ohio, Pennsylvania, West Virginia, Oklahoma and Texas can be linked to hydraulic fracturing wells in those regions, according to researchers speaking at the SSA 2019 Annual Meeting.

Location of wastewater disposal drives induced seismicity at US oil sites
The depth of the rock layer that serves as the disposal site for wastewater produced during unconventional oil extraction plays a significant role in whether that disposal triggers earthquakes in the US, according to a new study that takes a broad look at the issue.

Read More: Hydraulic Fracturing News and Hydraulic Fracturing Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.