Nav: Home

NIST physicists 'teleport' logic operation between separated ions

May 30, 2019

Physicists at the National Institute of Standards and Technology (NIST) have teleported a computer circuit instruction known as a quantum logic operation between two separated ions (electrically charged atoms), showcasing how quantum computer programs could carry out tasks in future large-scale quantum networks.

Quantum teleportation transfers data from one quantum system (such as an ion) to another (such as a second ion), even if the two are completely isolated from each other, like two books in the basements of separate buildings. In this real-life form of teleportation, only quantum information, not matter, is transported, as opposed to the Star Trek version of "beaming" entire human beings from, say, a spaceship to a planet.

Teleportation of quantum data has been demonstrated previously with ions and a variety of other quantum systems. But the new work is the first to teleport a complete quantum logic operation using ions, a leading candidate for the architecture of future quantum computers. The experiments are described in the May 31 issue of Science.

"We verified that our logic operation works on all input states of two quantum bits with 85 to 87% probability--far from perfect, but it is a start," NIST physicist Dietrich Leibfried said.

A full-scale quantum computer, if one can be built, could solve certain problems that are currently intractable. NIST has contributed to global research efforts to harness quantum behavior for practical technologies, including efforts to build quantum computers.

For quantum computers to perform as hoped, they will probably need millions of quantum bits, or "qubits," as well as ways to conduct operations between qubits distributed across large-scale machines and networks. Teleportation of logic operations is one way do that without direct quantum mechanical connections (physical connections for the exchange of classical information will still be needed).

The NIST team teleported a quantum controlled-NOT (CNOT) logic operation, or logic gate, between two beryllium ion qubits located more than 340 micrometers (millionths of a meter) apart in separate zones of an ion trap, a distance that rules out any substantial direct interaction. A CNOT operation flips the second qubit from 0 to 1, or vice versa, only if the first qubit is 1; nothing happens if the first qubit is 0. In typical quantum fashion, both qubits can be in "superpositions" in which they have values of both 1 and 0 at the same time.

The NIST teleportation process relies on entanglement, which links the quantum properties of particles even when they are separated. A "messenger" pair of entangled magnesium ions is used to transfer information between the beryllium ions (see infographic).

The NIST team found that its teleported CNOT process entangled the two magnesium ions--a crucial early step--with a 95% success rate, while the full logic operation succeeded 85% to 87% of the time.

"Gate teleportation allows us to perform a quantum logic gate between two ions that are spatially separated and may have never interacted before," Leibfried said. "The trick is that they each have one ion of another entangled pair by their side, and this entanglement resource, distributed ahead of the gate, allows us to do a quantum trick that has no classical counterpart."

"The entangled messenger pairs could be produced in a dedicated part of the computer and shipped separately to qubits that need to be connected with a logic gate but are in remote locations," Leibfried added.

The NIST work also integrated into a single experiment, for the first time, several operations that will be essential for building large-scale quantum computers based on ions, including control of different types of ions, ion transport, and entangling operations on selected subsets of the system.

To verify that they performed a CNOT gate, the researchers prepared the first qubit in 16 different combinations of input states and then measured the outputs on the second qubit. This produced a generalized quantum "truth table" showing the process worked.

In addition to generating a truth table, the researchers checked the consistency of the data over extended run times to help identify error sources in the experimental setup. This technique is expected to be an important tool in characterizing quantum information processes in future experiments.
-end-
This work was supported by the Office of the Director of National Intelligence, the Intelligence Advanced Research Projects Activity and the Office of Naval Research.

Paper: Y. Wan, D. Kienzler, S. Erickson, K.H. Mayer, T.R. Tan, J. Wu, H.M. Vasconcelos, S. Glancy, E. Knill, D.J. Wineland, A.C. Wilson and D. Leibfried. 2019. Quantum gate teleportation between separated zones of a trapped-ion processor. Science. May 31.

National Institute of Standards and Technology (NIST)

Related Quantum Computers Articles:

Blanket of light may give better quantum computers
Researchers from DTU Physics describe in an article in Science, how--by simple means -- they have created a 'carpet' of thousands of quantum-mechanically entangled light pulses.
One step closer future to quantum computers
Physicists at Uppsala University in Sweden have identified how to distinguish between true and 'fake' Majorana states in one of the most commonly used experimental setups, by means of supercurrent measurements.
Dartmouth research advances noise cancelling for quantum computers
The characterization of complex noise in quantum computers is a critical step toward making the systems more precise.
Spreading light over quantum computers
Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer.
Newfound superconductor material could be the 'silicon of quantum computers'
Newly discovered properties in the compound uranium ditelluride show that it could prove highly resistant to one of the nemeses of quantum computer development -- the difficulty with making such a computer's memory storage switches, called qubits, function long enough to finish a computation before losing the delicate physical relationship that allows them to operate as a group.
Quantum computers to clarify the connection between the quantum and classical worlds
Los Alamos National Laboratory scientists have developed a new quantum computing algorithm that offers a clearer understanding of the quantum-to-classical transition, which could help model systems on the cusp of quantum and classical worlds, such as biological proteins, and also resolve questions about how quantum mechanics applies to large-scale objects.
The best of both worlds: how to solve real problems on modern quantum computers
Researchers at the US Department of Energy's (DOE) Argonne National Laboratory and Los Alamos National Laboratory, along with researchers at Clemson University and Fujitsu Laboratories of America, have developed hybrid algorithms to run on size-limited quantum machines and have demonstrated them for practical applications.
A new theory for trapping light particles aims to advance development of quantum computers
Researchers have developed a new protocol for ensuring the stability of data when photons are stored for extended periods of time.
Improving quantum computers
For decades, experts have predicted that quantum computers will someday perform difficult tasks, such as simulating complex chemical systems, that can't be done by conventional computers.
A new hope of quantum computers for factorizations of RSA with a thousand-fold excess
Universal quantum computers are still in its infancy that cannot achieve practical applications (code-cracking) in near term.
More Quantum Computers News and Quantum Computers Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.