Cancer-fighting combination targets glioblastoma

May 30, 2019

Chestnut Hill, Mass. (5/30/2019) - Researchers have paired a specialized diet and a tumor-fighting drug and found the non-toxic combination helps to destroy the two major cells found in an aggressive form of brain cancer, the team reports in the online edition of the Nature group journal Communications Biology.

The international team combined a calorie-restricted diet high in fat and low in carbohydrates with a tumor-inhibiting antibiotic and found the combination destroys cancer stem cells and mesenchymal cells, the two major cells found in glioblastoma, a fast-moving brain cancer that resists traditional treatment protocols.

The ketogenic diet and the antibiotic 6-diazo-5-oxo-L-norleucine - first characterized in 1956 and referred to as DON - offer a non-toxic therapeutic strategy that could be used to manage the deadly brain cancer, said Boston College Professor of Biology Thomas N. Seyfried, a lead author of the paper with Boston College Senior Research Scientist Purna Mukherjee.

The researchers, probing a treatment modeled on evidence that glioblastoma is primarily a mitochondrial metabolic disease driven by fermentation, discovered the combination was able to penetrate the blood-brain barrier that shields the brain from both injury and interventions, they wrote in the article, titled "Therapeutic benefit of combining calorie-restricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma."

"We were surprised that the restricted ketogenic diet facilitated delivery of DON through the blood-brain barrier," said Seyfried, a lipid biochemist and author of the book Cancer As A Metabolic Disease (Wiley, 2012). "It appears from this study and our previous study with another drug, that the restricted ketogenic diet can be considered a novel drug delivery system for the brain. There is no drug known that can do this."

The team from Boston College, Harvard Medical School, Berg LLC., Venezuela's Zulia University, and Hungary's University of Budapest, studied the diet-drug intervention in mice that serve as the closest models to glioblastoma in humans.

The carbohydrate glucose and the amino acid glutamine are the two major fermentable fuels in the body that can drive the growth of glioblastoma, as well as most cancers, Seyfried said. Yet relatively few studies have simultaneously targeted these fuels as candidates for therapeutic management of glioblastoma.

In a report last December, Seyfried and colleagues identified glutamine fermentation as the "missing link" in the metabolic theory of cancer first posited by Nobel laureate Otto Warburg in 1931. Contrary to the theory that cancer is determined by genomic instability in the nucleus of a cell, the metabolic theory of cancer holds that cancer's deadly path begins in the mitochondria, where cells generate energy.

In their new study, the researchers administered DON, a glutamine antagonist, in concert with a calorie-restricted, ketogenic diet to treat late-stage tumor growth in the brain. DON targets the biochemical "missing link" - the reaction glutaminolysis - while the ketogenic diet both reduces glucose and elevates non-fermentable and neuroprotective ketone bodies, Seyfried said.

"The diet-drug therapeutic strategy killed tumor cells while reversing disease symptoms, and improving overall mouse survival," said Seyfried. "The therapeutic strategy also reduces edema, hemorrhage, and inflammation. Moreover, the calorie-restricted ketogenic diet facilitated DON delivery to the brain and allowed a lower dosage to achieve therapeutic effect."

In addition to Seyfried and Mukherjee, co-authors of the study include Marek A. Domin, of the Boston College Department of Chemistry's Mass Spectrometry Center and former undergraduate researcher Zachary M. Augur; Michael A. Kiebish of Berg LLC, Rodney Bronson of Harvard Medical School; Gabriel Arismendi-Morillo, of Zulia University, Venezuela; and Christos Chinopoulos of the University of Budapest, Hungary.

Glioblastoma is an aggressive primary human brain tumor that has resisted effective medical treatments and interventions for decades. The current standard of care combination of surgery, chemotherapy and radiation treatment offers to a median life expectancy of 15 to 16 months, often with debilitating side effects.

"The findings support the importance of glucose and glutamine in driving glioblastoma growth and provide a therapeutic strategy for non-toxic metabolic management," said Seyfried, who has been searching for alternative cancer treatments throughout his career.

Seyfried said next steps to further explore the combination would be to determine if the diet-drug therapeutic synergy found for glioblastoma could also be seen for other malignant cancers, as glucose and glutamine are the key fuels that drive most if not all malignant cancers regardless of cell or tissue origin.

Boston College

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to