Stanford engineers develop a more stable, efficient prosthetic foot

May 30, 2019

Taking on a hiking trail or a cobblestone street with a prosthetic leg is a risky proposition - it's possible, but even in relatively easy terrain, people who use prostheses to walk are more likely to fall than others. Now, Stanford University mechanical engineers have developed a more stable prosthetic leg - and a better way of designing them - that could make challenging terrain more manageable for people who have lost a lower leg.

The cornerstone of the new design is a kind of tripod foot that responds to rough terrain by actively shifting pressure between three different contact points. As important as the foot is a tool, the team developed for quickly emulating and improving their prototypes.

"Prosthetic emulators allow us to try lots of different designs without the overhead of new hardware," said Steven Collins, an associate professor of mechanical engineering and a member of Stanford Bio-X. "Basically, we can try any kind of crazy design ideas we might have and see how people respond to them," he said, without having to build each idea separately, an effort that can take months or years for each different design.

Graduate student Vincent Chiu, postdoctoral researcher Alexandra Voloshina and Collins describe the construction and first tests of their prosthetic emulator in a paper published in IEEE Transactions on Biomedical Engineering.

Adjusting to the terrain

Around half a million people in the United States have lost a lower limb, with effects that go beyond simply making it harder to move around. People with a leg amputation are five times more likely to fall in the course of a year, which may contribute to why they are also less socially engaged. A better prosthetic limb could improve not just mobility but overall quality of life as well.

One area of particular interest is making prosthetic limbs that can better handle rough ground. The solution, Chiu, Voloshina and Collins thought, might be a tripod with a rear-facing heel and two forward-facing toes. Outfitted with position sensors and motors, the foot could adjust its orientation to respond to varying terrain, much as someone with an intact foot could move their toes and flex their ankles to compensate while walking over rough ground.

But the engineers knew that perfecting the design would be tough - even with simple designs, a conventional approach can take years or more. "First you have to come up with an idea and then you prototype it and then you make a nice machined version," Chiu said. "It could take several years, and most of the time you find out that it doesn't actually work."

Accelerating design

Chiu and his team thought they could accelerate the process by developing an emulator, which flips the design process on its head. Rather than building a prosthetic limb someone could test in the real world, the team instead built a basic tripod foot, then hooked it up to powerful off-board motors and computer systems that control how the foot responds as a user moves over all kinds of terrain.

In doing so, the team can put their design focus on how the prosthesis should function - how hard one toe should push off while walking, how springy the heel should be and so forth - without having to worry about how to make the device lightweight and inexpensive at the same time.

So far the team has reported results from work with one participant, a 60-year-old man who lost his leg below the knee due to diabetes, and the early results are promising - making the team hopeful they can take those results and turn them into more capable prosthetics.

"One of the things we're excited to do is translate what we find in the lab into lightweight and low power and therefore inexpensive devices that can be tested outside the lab," Collins said. "And if that goes well, we'd like to help make this a product that people can use in everyday life."
-end-


Stanford University

Related Mechanical Engineering Articles from Brightsurf:

Best practices for mechanical ventilation in patients with ARDS, COVID-19
A team from pulmonary and critical care medicine at Michigan Medicine outlines 20 evidence-based practices shown to reduce time spent on a ventilator and death in patients with acute respiratory failure and acute respiratory distress -- conditions that have many overlaps with severe COVID-19.

How cells use mechanical tension sensors to interact with their environment
In a painstaking experiment, scientists suspended a single protein filament between two microscopic beads.

Mechanical forces of biofilms could play role in infections
Studying bacterial biofilms, EPFL scientists have discovered that mechanical forces within them are sufficient to deform the soft material they grow on, e.g. biological tissues, suggesting a ''mechanical'' mode of bacterial infection.

How mechanical forces nudge tumors toward malignancy
Researchers studying two forms of skin cancer identified a long-overlooked factor determining why some tumors are more likely to metastasize than others: the physical properties of the tissue in which the cancer originates.

Building mechanical memory boards using origami
Origami can be used to create mechanical, binary switches, and in Applied Physics Letters, researchers report the fabrication of such a paper device, using the Kresling pattern, that can act as a mechanical switch.

Not just light: The sensitivity of photoreceptors to mechanical stimuli is unveiled
''We thought we knew almost everything about photoreceptors, but we have proved that is not the case''.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Cell removal as the result of a mechanical instability
Researchers at Kanazawa University report in the Biophysical Journal that the process of cell removal from an epithelial layer follows from an inherent mechanical instability.

Researchers demonstrate transport of mechanical energy, even through damaged pathways
Researchers from the University of Illinois at Urbana-Champaign's Grainger College of Engineering have experimentally demonstrated a new way to transport energy even through wave-guides that are defective, and even if the disorder is a transient phenomenon in time.

Tissues protect their DNA under mechanical stress
Nuclei and genetic material deform.

Read More: Mechanical Engineering News and Mechanical Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.