From seawater to freshwater with a nanotechnology filter

May 31, 2011

In this month's Physics World, Jason Reese, Weir Professor of Thermodynamics and Fluid Mechanics at the University of Strathclyde, describes the role that carbon nanotubes (CNTs) could play in the desalination of water, providing a possible solution to the problem of the world's ever-growing population demanding more and more fresh drinking water.

Global population projections suggest that worldwide demand for water will increase by a third before 2030.

But with more than a billion people already experiencing drinking-water shortages, and with a potential 3𔃄 oC increase in temperature and subsequent redistribution of rainfall patterns, things are likely to get even worse.

CNTs - essentially sheets of one-atom thick carbon rolled into cylinders - have been investigated by Reese and his research group, using computer simulations, as a new way of addressing this challenge and transforming abundant seawater into pure, clean drinking water.

Their technique is based on the process of osmosis - the natural movement of water from a region with low solute concentration across a permeable membrane to a region with high concentration. But just as with most existing water-desalination plants, Reese's technique actually uses the opposite process of "reverse osmosis" whereby water moves in the opposite direction, leaving the salty water clean.

One can imagine a large tank of water, separated into two sections by a permeable membrane, with one half containing fresh water and the other half containing seawater. The natural movement of water would move from the fresh water side to the seawater side to try and dilute the seawater and neutralize the concentrations.

But in reverse osmosis a large amount of pressure is applied to the seawater side of the tank, which reverses the process, making water move into the fresh-water side and leave the salt behind.

Although this process can remove the necessary salt and mineral content from the water, it is incredibly inefficient and producing the high pressures is expensive.

Reese has, however, shown that CNTs can realistically expect to have water permeability 20 times that of modern commercial reverse-osmosis membranes, greatly reducing the cost and energy required for desalination. Additionally, CNTs are highly efficient at repelling salt ions, more so because specific chemical groups can be attached to them to create a specific "gatekeeper" function.

As Reese writes, "The holy grail of reverse-osmosis desalination is combining high water-transport rates with efficient salt-ion rejection. While many questions still remain, the exciting potential of membranes of nanotubes to transform desalination and water-purification processes is clear, and is a very real and socially progressive use of nanotechnology."

Also in the June edition:
-end-
Please mention Physics World as the source of these items and, if publishing online, please include a hyperlink to: http://www.physicsworld.com

Notes for editors:

1. Physics World is the international monthly magazine published by the Institute of Physics. For further information or details of its editorial programme, please contact the editor, Dr Matin Durrani, on tel +44 (0)117 930 1002. The magazine's website physicsworld.com is updated regularly and contains physics news, views and resources. Visit http://www.physicsworld.com.

2. For copies of Physics World and copies of the articles reviewed here contact Michael Bishop, IOP press assistant, tel +44 (0)117 930 1032, e-mail michael.bishop@iop.org.

3. The Institute of Physics is a scientific charity devoted to increasing the practice, understanding and application of physics. It has a worldwide membership of around 40,000 and is a leading communicator of physics-related science to all audiences, from specialists through to government and the general public. Its publishing company, IOP Publishing, is a world leader in scientific publishing and the electronic dissemination of physics.

IOP Publishing

Related Carbon Nanotubes Articles from Brightsurf:

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

New production method for carbon nanotubes gets green light
A new method of producing carbon nanotubes -- tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics -- has been given the green light by researchers, meaning work in this crucial field can continue.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Research shows old newspapers can be used to grow carbon nanotubes
New research has found that old newspaper provide a cheap and green solution for the bulk production of single walled carbon nanotubes.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Dietary fiber effectively purifies carbon nanotubes
A dietary fiber can help separate out semiconducting carbon nanotubes used for making transistors for flexible electronics.

Why modified carbon nanotubes can help the reproducibility problem
Scientists at Tokyo Institute of Technology (Tokyo Tech) conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells.

Tensile strength of carbon nanotubes depends on their chiral structures
Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes.

New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Read More: Carbon Nanotubes News and Carbon Nanotubes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.