Nav: Home

Mapping neural networks to strengthen circadian rhythms

May 31, 2016

Washington, D.C., May 31, 2016 -- If you've ever felt groggy the morning after traversing time zones, you can thank the temporary mismatch between your body's 24-hour circadian rhythm and your new local time. In mammals, this rhythm is governed on a neuronal and hormonal level by the suprachiasmatic nucleus, a tiny region of the brain's nestled directly above the two optic nerves. But it's not just a long flight that can throw us out of whack. As we age, the suprachiasmatic nucleus, or SCN, tends to exhibit a weaker circadian rhythm, which can result in sleep disorders, metabolic syndrome and depression.

While the evidence behind this age-related weakening has been established in medical literature, the mechanisms behind it, and the connectivity structure of the neurons, have remained elusive. To better understand these neuronal and hormonal mechanisms and help develop potential treatments, researchers at the University of Shanghai for Science and Technology in China have conducted experimental analyses of the SCN's connections, with the goal of determining its degree of heterogeneity. This is a measure of how many "hub" nodes within a network connect to other nodes.

Networks, in general, consist of nodes and links. If the degree of heterogeneity in a network is high, these hubs link to many other nodes; if it's low, the network topology is considered "flat," and the difference between the hubs and the other nodes is small.

The SCN's master clock consists of about 20,000 neurons coupled together through neurotransmitters. Within this network, about 25 percent of the neurons are coupled together into a subgroup that receives light from the retina. The remaining 75 percent of the neurons are coupled to these neurons -- these subgroups are known, respectively, as the ventrolateral and dorsomedial subgroups.

In their current paper, which appears this week in CHAOS, from AIP Publishing, the researchers analytically mapped these connections in the SCN as four different types of networks ranging from low to high levels of heterogeneity. These were the all-to-all network, the Newman-Watts network, the Erdös-Rényi network and the Barabási-Albert scale-free network.

The researchers found that in the "all-to-all" network, which was the least heterogenous, the SCN tends to lose the circadian rhythm induced by the other three networks, making it the least likely network type. They also found that the amplitude, or wave-like crest, of the circadian rhythm is largest in the Barabási-Albert scale-free network.

"The experiments suggest that the SCN is a heterogeneous network, but so far the details of the network structure of the SCN haven't been discovered," said Changgui Gu, an associate professor at the University of Shanghai for Science and Technology.

According to Gu, if the network structure of the SCN were heterogenous, this could be used to strengthen the circadian rhythm through bifurcation theory, in which a small, smooth change made to a boundary value in a system causes a qualitative change in the network's pattern of arrangement.

Future research for Gu and his colleagues may involve collaborations with medical researchers to develop drugs that can strengthen the SCN network's heterogeneity to counteract the weakening effects of age.
The article, "The circadian rhythm induced by the heterogeneous network structure of the suprachiasmatic nucleus," is authored by Changgui Gu and Hujie Yang. It appears in the journal CHAOS on May 31, 2016 (DOI: 10.1063/1.4949012). After that date, it can be accessed at:


CHAOS is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See

American Institute of Physics

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".