Nav: Home

Mapping neural networks to strengthen circadian rhythms

May 31, 2016

Washington, D.C., May 31, 2016 -- If you've ever felt groggy the morning after traversing time zones, you can thank the temporary mismatch between your body's 24-hour circadian rhythm and your new local time. In mammals, this rhythm is governed on a neuronal and hormonal level by the suprachiasmatic nucleus, a tiny region of the brain's nestled directly above the two optic nerves. But it's not just a long flight that can throw us out of whack. As we age, the suprachiasmatic nucleus, or SCN, tends to exhibit a weaker circadian rhythm, which can result in sleep disorders, metabolic syndrome and depression.

While the evidence behind this age-related weakening has been established in medical literature, the mechanisms behind it, and the connectivity structure of the neurons, have remained elusive. To better understand these neuronal and hormonal mechanisms and help develop potential treatments, researchers at the University of Shanghai for Science and Technology in China have conducted experimental analyses of the SCN's connections, with the goal of determining its degree of heterogeneity. This is a measure of how many "hub" nodes within a network connect to other nodes.

Networks, in general, consist of nodes and links. If the degree of heterogeneity in a network is high, these hubs link to many other nodes; if it's low, the network topology is considered "flat," and the difference between the hubs and the other nodes is small.

The SCN's master clock consists of about 20,000 neurons coupled together through neurotransmitters. Within this network, about 25 percent of the neurons are coupled together into a subgroup that receives light from the retina. The remaining 75 percent of the neurons are coupled to these neurons -- these subgroups are known, respectively, as the ventrolateral and dorsomedial subgroups.

In their current paper, which appears this week in CHAOS, from AIP Publishing, the researchers analytically mapped these connections in the SCN as four different types of networks ranging from low to high levels of heterogeneity. These were the all-to-all network, the Newman-Watts network, the Erdös-Rényi network and the Barabási-Albert scale-free network.

The researchers found that in the "all-to-all" network, which was the least heterogenous, the SCN tends to lose the circadian rhythm induced by the other three networks, making it the least likely network type. They also found that the amplitude, or wave-like crest, of the circadian rhythm is largest in the Barabási-Albert scale-free network.

"The experiments suggest that the SCN is a heterogeneous network, but so far the details of the network structure of the SCN haven't been discovered," said Changgui Gu, an associate professor at the University of Shanghai for Science and Technology.

According to Gu, if the network structure of the SCN were heterogenous, this could be used to strengthen the circadian rhythm through bifurcation theory, in which a small, smooth change made to a boundary value in a system causes a qualitative change in the network's pattern of arrangement.

Future research for Gu and his colleagues may involve collaborations with medical researchers to develop drugs that can strengthen the SCN network's heterogeneity to counteract the weakening effects of age.
The article, "The circadian rhythm induced by the heterogeneous network structure of the suprachiasmatic nucleus," is authored by Changgui Gu and Hujie Yang. It appears in the journal CHAOS on May 31, 2016 (DOI: 10.1063/1.4949012). After that date, it can be accessed at:


CHAOS is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See

American Institute of Physics

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab