Nav: Home

Studying life on the rocks

May 31, 2016

WASHINGTON, D.C., May 31, 2016 -- Much of modern life is deeply impacted by the behavior of ice.

Now, new work from a team at Lamont-Doherty Earth Observatory at Columbia University in Palisades, New York, gives insights into what is happening inside ice. The team has developed an apparatus to meet the growing need for measuring ice as it changes in response to external forces, a process ice scientists call "deformational behaviors.'' These forces occur on Earth in glacial ice as it flows due to gravity, and in space as icy satellite bodies, such as the moons of Jupiter and Saturn, respond to tidal forces from their parent bodies. These planetary icy satellites greatly intrigue scientists with their potential to hold vast oceans under the ice, and possibly, to support life.

The Lamont-Doherty team's report on their device -- called a cryogenic deformation apparatus -- appears in the current issue of the Review of Scientific Instruments, from AIP Publishing.

The paper addresses three basic processes. First, the frictional process of sliding: glaciers are rivers of ice that move ("slide") ice from centers of accumulation to oceans, a process that affects climate and water levels. The second process is anelastic behavior of an icy body, which is its ability to turn periodic mechanical energy (from tides, for instance) into heat. The third process, tidal dissipation, has recently become a focus in planetary science as a potential heat source sufficient enough to create and maintain subsurface global oceans and viscous processes affecting ice flow in which disturbances within the crystal lattice allow ice to flow like honey (over long enough time periods).

The apparatus is an adaptation of the classical biaxial friction apparatus used to study fault mechanics and earthquake generation in rocks. Another refinement of the new apparatus is its temperature control capability. It allows scientists to measure a variety of ice behaviors at conditions that are applicable to both terrestrial glaciers and icy moon surfaces. In nature, glacier temperatures are between 0 and -20 degrees Celsius (-4 degrees Fahrenheit). Ice shells of icy satellites can have warm interiors -- approximately 0 degrees C -- but surface temperatures as low as -200 degrees C (-330 F), like on Saturn's moon Enceladus, though the team's apparatus does not reach that extremely low temperature.

Temperature versatility is important because increasing evidence documents dynamic and often unpredicted behavior of ice that could affect environmental conditions -- as with glaciers on earth, for example -- and explain the evolution of satellites' bodies in space, as with Jupiter's moon Europa and Saturn's Enceladus.

"Our design allows for both glaciological and planetary applications over a range of deformational behaviors including friction, anelastic and viscous [properties]. That range of adaptability we hope will lead to new insights about ice deformation, in particular by combining analysis of different responses and seeing how they compete at different timescales," said Christine McCarthy, the study's lead author.

In particular, the team hopes to extend their study of ice-on-rock friction to include more realistic interfaces, including till and, ultimately, pressurized melt water.

For their next step, the team intends to continue testing ice friction at terrestrial glacier temperatures, in particular exploring how tides affect sliding rates and stability.

For the next iteration of experiments they will dive into much deeper, colder temperatures, approximately -90 degrees C (-130 degrees F), and look at ice with small amounts of ammonia or sulfuric acid, which are second phases suggested for Enceladus and Europa, respectively.

"We'd like to see if frictional heating on faults of icy moons can explain the geysers of liquid water observed on their surfaces," McCarthy said.
The article, "An apparatus to measure frictional, anelastic, and viscous behavior in ice at temperate and planetary conditions," is authored by C. McCarthy, H.M. Savage, T. Koczynski and M. Nielson. The article will appear in the journal Review of Scientific Instruments on May 31, 2016 [DOI: 10.1063/1.4950782]. After that date, it can be accessed at:


Review of Scientific Instruments publishes original research and review articles on instruments in physics, chemistry, and the life sciences. The journal also includes sections on new instruments and new materials. See

American Institute of Physics

Related Glaciers Articles:

Saying goodbye to glaciers
Glaciers around the world are disappearing before our eyes, and the implications for people are wide-ranging and troubling, Twila Moon, a glacier expert at the University of Colorado Boulder, concludes in a Perspectives piece in the journal Science today.
Glaciers rapidly shrinking and disappearing: 50 years of glacier change in Montana
The warming climate has dramatically reduced the size of 39 glaciers in Montana since 1966, some by as much as 85 percent, according to data released by the U.S.
Polar glaciers may be home to previously undiscovered carbon cycle
Microbes in streams flowing on the surface of glaciers in the Arctic and Antarctic may represent a previously underestimated source of organic material and be part of an as yet undiscovered 'dynamic local carbon cycle,' according to a new paper published by researchers supported by the National Science Foundation.
Study shows planet's atmospheric oxygen rose through glaciers
A 'Snowball Earth' event actually took place 100 million years earlier than previously projected.
Researchers find seafloor valleys below West Antarctic glaciers
Glaciologists have uncovered large valleys in the ocean floor beneath some of the massive glaciers flowing into the Amundsen Sea in West Antarctica.
Mountain glaciers are showing some of the strongest responses to climate change
Tying an individual glacier's retreat to climate change has been controversial.
Most meltwater in Greenland fjords likely comes from icebergs, not glaciers
Icebergs contribute more meltwater to Greenland's fjords than previously thought, losing up to half of their volume as they move through the narrow inlets, according to new research.
Receding glaciers in Bolivia leave communities at risk
A new study published in The Cryosphere, an European Geosciences Union journal, has found that Bolivian glaciers shrunk by 43 percent between 1986 and 2014, and will continue to diminish if temperatures in the region continue to increase.
Technique could assess historic changes to Antarctic sea ice and glaciers
Historic changes to Antarctic sea ice could be unravelled using a new technique pioneered by scientists at Plymouth University.
Cosmopolitan snow algae accelerate the melting of Arctic glaciers
The role of red pigmented snow algae in melting Arctic glaciers has been strongly underestimated, suggests a study to be published in Nature Communications on June 22.

Related Glaciers Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".