Nav: Home

Vicious circle of platelets: Alzheimer's disease patients may benefit from anti-platelet therapy

May 31, 2016

Inhibition of platelets in Alzheimer's disease patients may become an important in therapy in future. Research findings of an international research team led by Professor Margitta Elvers, Institute of Hemostasis, Hemotherapy and Transfusion Medicine, University Clinic Düsseldorf, Germany, could be of great importance for the treatment of Alzheimer's disease patients.

They were published in the current issue of the renowned journal Science Signaling. The scientists provide evidence for the first time that treatment of Alzheimer transgenic model mice with an anti-platelet drug leads to significantly reduced amyloid plaques in cerebral vessels. They together with scientists from the Research Center Jülich, Germany, identified a key mechanism for a direct involvement of platelets in the progression of the disease.

Alzheimer's disease is an age-related neurodegenerative disorder that is the most common form of senile dementia with about 35 million people worldwide who are affected by this progressive cognitive decline. By 2030, the number of Alzheimer's disease patients is predicted to increase to > 66 million people; by 2050 the number is predicted to increase already to 115 million people. Alzheimer's disease is characterized by the formation of protein agglutination, so called amyloid aggregates, and deposits of amyloid in the brain. These amyloid deposits damage structure and function of nerve tissue in the brain and lead to the loss of neuronal cells and cognitive capability.

Formation of amyloid deposits in Alzheimer's disease patients occurs not only in brain parenchyma but also in blood vessels in the brain that contributes to the severity of Alzheimer's disease pathology. The scientists from Düsseldorf already demonstrated that attachment of platelets to amyloid deposits of the vessel wall leads to ongoing platelet activation in mice. Platelets stick together and form a hemostatic plug which induced the occlusion of vessels in the brain leading to insufficient perfusion of the surrounding tissue. The current published results are predicted on the vascular form of the disease.

An involvement of platelets in Alzheimer's disease is assumed for many years. The scientists from Düsseldorf and Jülich were now able to identify the key mechanisms of a direct involvement of platelets. This mechanism is characterized by the binding of the protein amyloid-? to a specific integrin, a receptor on the platelet surface that is important for the aggregation of platelets. This binding induces the release of adenosine diphosphate (ADP) and clusterin and supports the formation of amyloid plaques. Platelets from patients with Glanzmann's thrombasthenia, a hereditary defect of platelet activation, showed no amyloid plaques in cell culture experiments.

Anti-platelet agents such as Clopidogrel are applied for the therapy and prevention of blood clots that provoke myocardial infarction and stroke. Treatment of Alzheimer transgenic mice with Clopidogrel led to reduced platelet activation, significantly reduced amyloid plaque formation and thus improved the perfusion of the brain when these mice were treated with the anti-platelet drug for three months. "Platelets directly influence the formation of amyloid deposits in cerebral vessels, and A?, in turn, activates platelets, creating a feed-forward loop that supports fibril formation in cerebral vessels of Alzheimer's disease patients" says Margitta Elvers.

If platelets have an impact on the formation of amyloid plaques in brain tissue will be investigated by the scientists of Düsseldorf University at present.
Original publication:

Science Signaling, Donner et al., 2016, Platelets contribute to amyloid-β aggregation in cerebral vessels through integrin αIIbβ33-induced outside-in signaling and clusterin release

Heinrich-Heine University Duesseldorf

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...