Nav: Home

Researchers find what could be brain's trigger for binge behavior

May 31, 2016

Rats that responded to cues for sugar with the speed and excitement of binge-eaters were less motivated for the treat when certain neurons were suppressed, researchers discovered.

The findings suggest these neurons, in a largely unstudied region of the brain, are deeply connected to the tendency to overindulge in response to external triggers, a problem faced by people addicted to food, alcohol and drugs. The findings, due to appear in the June 15 issue of the journal Neuron, are now available online.

"External cues -- anything from a glimpse of powder that looks like cocaine or the jingle of an ice cream truck -- can trigger a relapse or binge eating," said Jocelyn M. Richard, a Johns Hopkins University post-doctoral fellow in psychological and brain sciences and the report's lead author. "Our findings show where in the brain this connection between environmental stimuli and the seeking of food or drugs is occurring."

First researchers trained rats to realize that if they heard a certain sound, either a siren or staccato beeps, and a pushed a lever, they would get a drink of sugar water. Then, as the rats performed the task, researchers monitored neurons within the ventral pallidum area of the rats' brains, a subcortical structure near the base of the brain.

When the rats heard the cue linked to their treat, a much larger-than-expected number of neurons reacted -- and vigorously, researchers found. They also found that when the neuron response was particularly robust, the rats were extra quick to go for the sugar. The researchers were able to predict how fast the rats would move for the sugar just by observing how excited the neurons became at the sound of the cue.

"We were surprised to see such a high number of neurons showing such a big increase in activity as soon as the sound played," Richard said.

Next, the researchers used "optogenetics," a technique that allows the manipulation of cells through targeted beams of light, to temporarily suppress the activity of ventral pallidum neurons while the rats heard the sugar cues. With those neurons inactive, the rats were less likely to pull the sugar lever; when they did pull it, they were much slower to do so.

That ability to slow and calm the reaction to cues or triggers for binges could be key for people trying to moderate addictive behaviors, Richard said.

"We don't want to make it so that people don't want rewards," Richard said. "We want to tone down the exaggerated motivation for rewards.
-end-
In addition to Richard, the research team included Frederic Ambroggi, a researcher at Aix-Marseille Université and Le Centre National de la Recherche Scientifique; Patricia H. Janak, a Bloomberg Distinguished Professor in the Department of Psychological and Brain Sciences and the Solomon H. Snyder Department of Neuroscience at Johns Hopkins; and Howard L. Fields, director of the Wheeler Center for the Neurobiology of Addiction at the University of California, San Francisco.

The research was supported by National Institutes of Health grants AA022290 and AA014925 and by the State of California.

Johns Hopkins University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...