Nav: Home

Attosecond physics: Attosecond camera for nanostructures

May 31, 2016

Physicists based at Ludwig-Maximilians-Universitaet (LMU) in Munich and the Max Planck Institute for Quantum Optics have observed a nanoscale light-matter phenomenon which lasts for only attoseconds.

When light strikes a metal, its electromagnetic field excites vibrations of the electrons in the metal. This interaction results in the formation of so-called near fields - electromagnetic fields that are localized close to the surface of the metal. Precisely how such near fields behave under the influence of light has now been investigated by an international team of physicists at LMU Munich and the Max Planck Institute for Quantum Optics (MPQ), in close collaboration with researchers at the Chair of Laser Physics at the Friedrich-Alexander-Universität Erlangen-Nürnberg.

The researchers focused intense infrared laser pulses onto a gold nanoneedle. These pulses are so short that they consist of only a few oscillations of the light field. When the light impinges on the nanowire it excites collective vibrations of the electrons associated with the gold atoms near the surface of the wire. These electron motions are responsible for the generation of near fields at the surface of the wire.

To study the timing of the near field's response to the light field, the physicists directed a second light pulse with an extremely short duration of just a couple of hundred attoseconds (1 as lasts for a billionth of a billionth of a second) onto the nanostructure very shortly after the first light pulse. This second flash actually detaches some electrons from the nanowire. When they reach the surface, they are accelerated by the near fields and can be detected, allowing the dynamics of the near fields to be characterized. Analysis of these electrons showed that the near fields were oscillating with a time shift of about 250 attoseconds with respect to the incident light, and that they were leading in their vibrations. In other words, the near-field vibrations reached their maximum amplitude 250 attoseconds earlier than the vibrations of the light field.

"Fields and surface waves generated in nanostructures are of central importance for the development of opto-electronics. With the imaging technique we have demonstrated here, they can now be sharply resolved," explains Professor Matthias Kling, the leader of the Ultrafast Nanophotonics group in the Department of Physics at LMU.

The experiments pave the way for more complex studies of light-matter interactions in metals that are of interest for nano-optics and the light-driven electronics of the future. Such electronics would work at the frequencies of light. Optical fields oscillate at rates of a million billion times per second, i.e. with petahertz frequencies - about 100,000 times faster than the clock frequencies attainable in conventional electronic devices.
-end-


Ludwig-Maximilians-Universität München

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...