Nav: Home

Researchers show nature conserves its most vital DNA by multitasking

May 31, 2016

In evolutionary biology, the most vital genomic elements necessary for survival are typically those that are held on most dearly throughout the history of life on Earth.

In a study published in the advanced online edition of Molecular Biology and Evolution, Professor Claudio Alonso and colleagues at the University of Sussex (UK) investigated these treasured genomic keepsakes, called ultraconserved elements (UCEs), which have been found to span the tree of life, from plants to yeast to mice to humans. They used the trusted fruit fly model Drosophila melanogaster together with other species where they applied a variety of bioinformatics tools to get at the heart of this poorly understood phenomenon.

In the new paper, the authors describe and define 'ultraconserved' as 50 base pairs long DNA elements found in all 12 Drosophila species they studied---a comparison that is greater than the evolutionary distance between humans and reptiles. Most importantly, the authors show that UCEs are the "multitaskers" of the genome, involved in numerous biological processes simultaneously, and this multi-layered function may be responsible for the extreme DNA sequence conservation observed.

Overall, they identified more than 1,500 UCEs in the fruit fly genome. These UCEs where found next to genes critical to animal development, suggesting that they act like hubs to allow genome access for an array of proteins. And similar to the real estate market, location is everything. They showed that the exact roles of UCEs vary depending on whether a UCE is found within a gene, between genes or controlling a gene from a vast distance.

For one protein, called Cad, the authors demonstrated dynamic binding with UCEs during development. This analysis showed that in young embryos, Cad binding was significantly enriched within a gene, while in adult flies there was a depletion of Cad binding. These results suggest that Drosophila UCEs might be implicated in the establishment and maintenance of genome packaging that is necessary for the precise control of gene expression throughout development.

Professor Alonso says "As a molecular biologist these elements always intrigued me because no single known molecular mechanism can explain the retention of exact DNA sequences of this length for such long evolutionary periods". And he also adds "Our computational work led by my colleague Dr Maria Warnefors strongly suggests that UCEs achieve their invariance due to their multi-tasking roles in several molecular mechanisms involved in gene control".

Their work contributes to the understanding of the mechanisms that lead to the existence of UCEs and suggests that the constraints of their "multitasking" genomic role can help explain the high level of evolutionary conservation of UCEs, and why nature prizes these DNA elements above all others.

Molecular Biology and Evolution (Oxford University Press)

Related Evolution Articles:

Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
More Evolution News and Evolution Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...