Nav: Home

Researchers show nature conserves its most vital DNA by multitasking

May 31, 2016

In evolutionary biology, the most vital genomic elements necessary for survival are typically those that are held on most dearly throughout the history of life on Earth.

In a study published in the advanced online edition of Molecular Biology and Evolution, Professor Claudio Alonso and colleagues at the University of Sussex (UK) investigated these treasured genomic keepsakes, called ultraconserved elements (UCEs), which have been found to span the tree of life, from plants to yeast to mice to humans. They used the trusted fruit fly model Drosophila melanogaster together with other species where they applied a variety of bioinformatics tools to get at the heart of this poorly understood phenomenon.

In the new paper, the authors describe and define 'ultraconserved' as 50 base pairs long DNA elements found in all 12 Drosophila species they studied---a comparison that is greater than the evolutionary distance between humans and reptiles. Most importantly, the authors show that UCEs are the "multitaskers" of the genome, involved in numerous biological processes simultaneously, and this multi-layered function may be responsible for the extreme DNA sequence conservation observed.

Overall, they identified more than 1,500 UCEs in the fruit fly genome. These UCEs where found next to genes critical to animal development, suggesting that they act like hubs to allow genome access for an array of proteins. And similar to the real estate market, location is everything. They showed that the exact roles of UCEs vary depending on whether a UCE is found within a gene, between genes or controlling a gene from a vast distance.

For one protein, called Cad, the authors demonstrated dynamic binding with UCEs during development. This analysis showed that in young embryos, Cad binding was significantly enriched within a gene, while in adult flies there was a depletion of Cad binding. These results suggest that Drosophila UCEs might be implicated in the establishment and maintenance of genome packaging that is necessary for the precise control of gene expression throughout development.

Professor Alonso says "As a molecular biologist these elements always intrigued me because no single known molecular mechanism can explain the retention of exact DNA sequences of this length for such long evolutionary periods". And he also adds "Our computational work led by my colleague Dr Maria Warnefors strongly suggests that UCEs achieve their invariance due to their multi-tasking roles in several molecular mechanisms involved in gene control".

Their work contributes to the understanding of the mechanisms that lead to the existence of UCEs and suggests that the constraints of their "multitasking" genomic role can help explain the high level of evolutionary conservation of UCEs, and why nature prizes these DNA elements above all others.
-end-


Molecular Biology and Evolution (Oxford University Press)

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...